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Wireless Powered Mobile Edge Computing (WPMEC) is an integration of Mobile Edge Computing (MEC) and

Wireless Power Transfer (WPT) technologies, to both improve computing capabilities of mobile devices and energy

compensation for their limited battery capabilities. Generally, energy transmitters, mobile devices, and edge servers form a

WPMEC system that realizes a closed loop of sending and collecting energy as well as oloading and receiving task data.

Due to constraints of time-varying network environments, time-coupled battery levels, and the half-duplex character of

mobile devices, the joint design of computation oloading and resource allocation solutions in WPMEC systems has become

extremely challenging, and a great number of studies have been devoted to it in recent years. In this article, we irst introduce

the basic model of the WPMEC system. Then, we present key issues and techniques related to WPMEC. In addition, we

summarize solutions for computation oloading and resource allocation to solve critical issues in WPMEC networks. Finally,

we discuss some research challenges and open issues.
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1 INTRODUCTION

With the explosive increase in the number of mobile devices and the volume of network traic, great challenges
have been posed on the mobile wireless network, to satisfy the requirements of bandwidth consumption, latency,
and energy consumption [1, 71]. Although Mobile Edge Computing (MEC) can improve the performance
of computing-intensive and latency-sensitive applications. The limited battery capacity of mobile devices has
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Fig. 1. Illustrative applications of WPMEC, where Access Points (APs) can emit energy signals, and mobile devices keep

normal operation by harvesting energy. In addition, Hybrid Access Points (HAPs) has the ability to both send RF signals

and process ofloaded tasks [5].

become an energy bottleneck that afects network performance [141]. This is because high data rates, ultra-low
latency communications, and strong data processing abilities are required for the upcoming 6G networks, leading
to the high energy consumption of network devices [46]. However, it is not practical to expand the battery
capacities of mobile devices to ininity. In addition, in remote areas and emergency circumstances, it is impossible
to always recharge mobile devices by grid power.
The above challenge can be alleviated with the recent development of wireless Energy Harvesting (EH)

technologies, such as renewable EH and Wireless Power Transfer (WPT) [47]. Renewable EH depends on
solar, wind, ocean, as well as other renewable energy sources, and is excessively afected by natural conditions
(e.g., weather, and climate) [53]. WPT realizes wireless charging of mobile devices by utilizing wireless APs to
send Radio Frequency (RF) signals. Compared with renewable EH, it can provide stable and reliable energy
supplies for mobile devices while prolonging their battery life [5].

1.1 Overview of WPEMC

Wireless Powered Mobile Edge Computing (WPMEC) is a new network paradigm, which combines WPT
and MEC, and has the advantages of the above two technologies, i.e., boosting computing capabilities of mobile
devices while relieving their energy shortage. Mobile devices can collect RF energy signals or other renewable
energy signals to sustain their operations, such as local task processing or computation task oloading. In the
upcoming 6G networks, WPMEC technology can alleviate energy limitations of Internet of Things (IoT) nodes,
and ensure quick responses and real-time experiences for network applications [99]. It is worth mentioning that
IoT requires satisfying performance at a controlled expense [74], while IoT with traditional MEC applications
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requires frequent device battery replacement [5]. Applying WPMEC to IoT scenarios extends the life of the device
and reduces operations and maintenance costs used to replace batteries [4].
As shown in Fig. 1, application scenarios empowered by WPMEC mainly includes three categories [5]. The

irst contains applications in the IoT [5], such as autonomous driving [110], automatic navigation [31], smart
home appliance [33], and warehouse management [120]. The second consists of applications in wireless sensor
networks [51], such as air quality monitoring [61], water quality monitoring [135], forest ire detection [21],
toxic gas detection [127], earthquake warning [15], and volcanic activity monitoring [143]. The last inlcudes
applications in smart grids [13], e.g., smart meters [79] and generation monitoring [32]. In these scenarios, energy
transmitters, mobile devices, and edge servers form a WPMEC network, where a closed loop of energy emission,
energy receiving as well as task oloading and processing is realized. One typical use case enabled by WPMEC in
IoT is warehouse management. In this application scenario, heterogeneous IoT devices are deployed around the
warehouse. Those IoT devices are powered by APs and process application tasks with the assistance of MEC
servers based on the collected environmental data.
Although the investigation of MEC and WPT techniques has been conducted in recent years, the latest

technology of WPMEC has not been thoroughly reviewed so far, to the best of our knowledge.

1.2 Comparison and Contributions

Although the investigation of MEC and WPT techniques has been conducted in recent years, the latest

technology of WPMEC has not been thoroughly reviewed so far, to the best of our knowledge Currently,
some surveys focus on WPT technology. Authors in [42, 94] focus on EH technology to collect ambient energy for
energy-constraint terminals. Authors in [2, 5, 7, 59, 101] investigate the RF-enabled WPT technology for wireless
communications, where aWireless Powered Communication Network (WPCN) can be built. Speciically,
authors in [5] describe the design of Simultaneous Wireless Information and Power Transfer (SWIPT) as
well as research challenges of WPCNs, and authors in [101] summarize some research results of WPCNs in terms
of resource allocation and transmission scheduling strategies. Focusing on the RF signal fading problem, authors in
[59] summarize the progress of WPCNs in improving EH eiciency. Authors in [7] overview network structures
and performance enhancement techniques for WPCNs. Authors in [2] focus on the investigation of using
beamforming technology to cope with the energy signal fading sensitivity of WPCNs. Authors in [2, 5, 7, 59, 101]
combine WPT and wireless communications, conducting a process of collecting energy and then communicating.
Compared with WPMEC, WPT solves the energy limitation problem of mobile devices, but does not take into
account the limited computing resources of mobile devices.

In addition, some surveys focus on MEC, and can be roughly classiied into four categories. The irst category
is about resource management, for example, authors in [43, 52, 85, 93] focus on resource management and
computation oloading of MEC systems. The second category is related to application scenarios, for example,
authors in [78, 81, 92] summarize the research progress of using MEC technology in IoT, industrial IoT, and
mobile augmented reality applications, respectively. The third category is about related technologies, for example,
authors in [18, 62, 87] summarize research applying Machine Learning (ML) , deep learning, and game theory
techniques to MEC system, respectively. The last category is about security, i.e., authors in [83, 84] analyze
security vulnerabilities and countermeasures of the MEC system. However, the limited battery capacities of
mobile devices in MEC systems has a heavy impact on the system performance and the quality of user experience.

In Table 1, we provide comparisons among related surveys. we can conclude that most of exsiting surveys related
to WPT technologies focus on applications, key technologies, and resource allocation of WPCNs. In addition,
the investigation related to MEC involves aspects of resource allocation, computation oloading, application
scenarios, related technologies, and security issues. However, there is a lack of systematic review articles that
provide a comprehensive and speciic discussion of research results on the deep integration of MEC and WPT.
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Table 1. Comparisons among related surveys on MEC and WPT.

Network Focuses Ref. Contributions

WPT

Renewable EH
[42] Investigate RF energy harvesting networks

[94] Investigate architectures of EH-enabled sensor networks

RF-enabled WPT

[5] Summarize applications and challenges of WPCN

[101] Summarize applications of EH communication networks

[2] Survey energy beamforming techniques in WPCNs

[7] Investigate related techniques for WPCNs

[59] Summarize techniques for RF wireless networks

MEC

Security
[84] Analyze security and privacy of the MEC system

[83] Reveal security vulnerabilities in MEC systems

Application scenarios

[78] Survey IoT applications and synergies with MEC

[81] Summarize architectures of MEC-related Industrial IoT

[92] Survey mobile augmented reality based on MEC and 5G

Resource management

[93] Discuss the smart resource deployment for MEC

[85] Survey service migration and resource allocation in MEC systems

[52] Investigate resource management of MEC systems

[43] Investigate resource allocation in MEC systems

Related technologies

[87] Survey the use of ML technology in MEC systems

[62] Summarize the use of game theory in MEC systems

[18] Summarize the use of deep learning in MEC systems

WPMEC

Resource allocation,

related technologies,

and solutions

This article

Summarize basic models, key issues, techniques, solutions,

challenges and open issues for computation oloading and

resource allocation in WPMEC systems

This has given impetus to this study, prompting us to conduct a comprehensive survey on basic models, key
issues, techniques, and solutions of computation oloading and resource allocation in WPMEC systems. Our
main contributions can be summarized as follows:

• We irst survey related techologies of WPT and MEC, and then summarize system models, key issues and
common techniques of WPMEC. It is promising to extend application scenarios from traditional static
scenarios to dynamic scenarios with real-time responses, and reduce system energy consumption by
reducing energy transfer attenuation and improving computation oloading eiciency.

• We summarize various approaches for computation oloading and resource allocation to solve key issues
in WPMEC systems, present a generic model of each approach and provide the corresponding learned
lessons. Side-by-side comparisons are provided for the state-of-the-art of WPMEC.

• We discuss several open issues and future research directions for WPMEC, including improved technologies
for WPMEC, UAV-assisted WPMEC, time allocation for WPMEC, energy harvesting and transmission for
WPMEC, and security issues in WPMEC.

1.3 Structure

The rest of this article is organized as follows. Section 2 irst introduces the WPMEC model, and then discusses
key issues and promising techniques in WPMEC systems. Section 3 overviews relevant solutions in WPMEC,
and Section 4 discusses challenges and future research directions in WPMEC. A summary of this article is given
in Section 5. For ease of reference, we provide deinitions of commonly used acronyms in Table 2 (details in
Appendix A of Supplemental File).
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Fig. 2. System models of WPMEC: a) distributed deployment of energy transmiters and MEC servers; b) centralized

deployment of energy transmiters and MEC servers.

2 WIRELESS POWERED MEC NETWORKS

Applying WPT technology to MEC networks alleviates the long-standing tug-of-war between satising system
performance and tolerable energy consumption. This section irst presents architectures, computation oloading
models of WPMEC networks, and focuses on performance metrics from both user and operator perspectives.
Then, we discuss corresponding key issues in detail. Finally, we focus on related techniques commonly used to
solve key issues in WPMEC networks, i.e., convex optimization, and ML techniques.

2.1 System Models of WPMEC

WPMEC combines the beneits of WPT and MEC to provide controllable energy supply and low-latency edge
services for mobile devices. The key technologies of WPT as well as MEC and the related architectures are
detailed in Appendix B of Supplemental File.
The traditional WPMEC architecture mainly consists of edge servers, mobile devices and energy sources

(including the solar, the wind, and APs with RF energy transmitters). Energy sources fulill the charging needs of
mobile devices to extend their runtime, while edge servers provide computing resources for them to improve
their peformance [89]. In some studies, edge servers and APs are inetgrated, called HAP, which is capable of both
transmitting RF signals and processing computation tasks oloaded by mobile devices.

2.1.1 Architectures. There are two major architectures for multi-user WPMEC networks, and their essential
diference is whether the RF transmitter is deployed in the same place as the MEC server. The distributed
deployment architecture in Fig. 2a consists of energy sources, � mobile devices, and anMEC server. The centralized
deployment architecture in Fig. 2b consists of a HAP and � mobile devices. Since the RF transmitter and the MEC
server are integrated at the HAP, the energy source of a HAP is the AP. Without loss of generality, both APs and
MEC servers have long-term stable wired-power supplies. It is generally assumed that all mobile devices, RF
transmitters, and MEC servers are equipped with a single antenna, and the wireless downlink is used for WPT
and the uplink is used for computation oloading. It is always presumed that the sub-channel between the MEC
server and mobile devices is a block fading channel, i.e., the channel power gain is constant in a time block.

2.1.2 Computation Ofloading Models. Generally, there are two models adopted for computation oloading, i.e.,
binary and partial oloading. Binary oloading allows the computation task to be either processed locally or
oloaded to the MEC server, taking into account factors including latency constraints and computation intensities
of oloaded tasks [68, 90]. Some researchers have found that diferent parts of one task may have diferent latency
and computational requirements, and thus oloading the whole task to the MEC server increases the latency and
wastes resources [44]. Therefore, the partial oloading model is proposed, which divides the task into two parts
based on factors such as latency and the amount of computation, with one part used for local computing and the
other for server processing [70, 73].
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In the multi-user WPMEC network, many users oload tasks simultaneously. To support multi-user oloading,
some researchers adopt Time Division Multiple Access (TDMA) technology, dividing the oloading phase into
multiple time slots and performing computation oloading for diferent users in diferent time slots [67]. TDMA
mechanism enables the joint optimization of task oloading and energy collection, allowing for lexible time
allocation schemes. By applying Orthogonal Frequency Division Multiple Access (OFDMA) technology,
each user delivers computation tasks to the MEC server through mutually orthogonal subchannels . Theoretically,
OFDMA technology can improve the spectrum utilization of multi-user WPMEC networks [103]. In addition,
Non-Orthogonal Multiple Access (NOMA) technology enables spectrum sharing among multiple users and
power allocation to diferent users. The NOMA collaborative oloading model can be applied to alleviate doubly
near-far efects in WPMEC networks [35, 139].

2.1.3 Major Metrics. In WPMEC networks, operators are responsible for deploying APs with RF transmitters
and installing energy receivers on commercial mobile devices, while the corresponding users pay operators for
the convenience of no repeated charging. One of the major advantages of WPMEC over traditional MEC is that it
alleviates the contradiction between the small capacity of device batteries and high-performance requirements.
To evaluate the system performance of WPMEC, some metrics are introduced from both operator and user
perspectives. Operators generally concern about the following metrics:

• Energy consumption: It refers to the energy consumed by the AP, users or the entire system in a time slot
[76]. Although WPT and renewable EH technologies alleviate the energy limitations of the device, energy
acquisition still has a cost. For example, the energy transmitted in the WPT phase originates from the grid,
and a high upfront capital investment is also required for equipment deployment and energy conversion of
renewable EHs.

• Energy eiciency: It is deined as bit-per-joule, i.e., the number of computation bits that can be implemented
per unit joule in the system [63]. Energy eiciency has become an increasingly important metric because it
trade-ofs the conlict between computation performance and energy consumption. In addition, computation
eiciency is deined by the inverse of energy eiciency and refers to the ratio of the energy consumed by
the system to the number of bits computed.

• Computing completion rate: It is deined as the ratio between the data processed by the system and the
total generated data [142]. In the case of poor wireless channel quality, insuicient device energy, and
inadequate transmission time, some computation tasks may be dropped or stored in the bufer to wait for
transmission in the next time slot.

Users commonly pay attention to the following metrics:

• Latency: It refers to the average completion time of tasks in the system within the task life cycle [39]. In
recent years, delay-sensitive applications such as augmented reality and autonomous driving have received
a great deal of attention, and the real-time delivery of processing results is critical to the network.

• Compututation bits: It refers to the total number of computed bits for all users in the system [51]. MEC
brings computational resources down to the network edge, empowering mobile devices with powerful
computing capabilities. Both of resource allocation and oloading decisions afect the computation rate.

• Throughput: It refers to the number of data bits that are successfully transmitted per time unit [88]. The
time-varying wireless channels, the choice of edge servers, the formulation of user oloading modes, and
the allocation of system resources all inluence system throughput. In scenarios such as IoT, where a large
amount of sensor information needs to be collected, the throughput is an important metric to measure
system eiciency.
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2.2 Issues of WPMEC

Although WPMEC technology compensates for the shortcomings of mobile devices with limited computational
and energy resources, the performance of WPMEC systems is still afected by a set of challenges including
half-duplex hardware constraints, doubly far-near efects, attenuation of signal transmission, high intermittency
of renewable energy, the randomness of task arrivals, the order of task processing, the imperfect CSI, nonlinear
EH models, and the selection of MEC servers. In this section, we discuss those key issues in detail.

2.2.1 Half-Duplex Hardware Constraints. In recent studies on WPMEC systems that rely on WPT technology
to charge mobile devices, the collecting of RF energy and the oloading of task data are separated in the time
domain by considering half-duplex hardware constraints [49]. Therefore, reasonable resource allocation and time
division for RF energy collection and task oloading are required. However, there are conlicts between time
division and resource allocation, since WPT determines task oloading, which in turn impacts the next phase of
WPT. Therefore, the solution for resource allocation and computation oloading in WPMEC systems becomes
extremely challenging.

2.2.2 Doubly Far-Near Efects. The doubly far-near efect is often generated in multi-user scenarios, where both
energy emitters and MEC servers are deployed at the HAP. Speciically, users far away from the HAP collect
less energy compared with those near the HAP in the same duration, and face a longer transmission distance
for computation oloading [9]. This leads to inequities in EH and computation oloading among users, and
performance for users farther away from the HAP cannot be guaranteed.
The optimization of key metrics such as energy consumption, energy eiciency, and computation rates in

WPMEC systems is based on a compromise due to doubly far-near efects. In some way, the system metrics are
always optimized to beneit mobile devices closer to the HAP at the expense of the performance of devices further
away [98]. However, it is important to ensure fairness among mobile devices in the WPMEC system. Instead of
concentrating on the overall performance of the system, some researchers focus on the performance of each
mobile device [38, 49]. That is to say, a competition exists among mobile devices, and a Nash equilibrium should
be achieved, and even the fairness among devices needs to be guaranteed. In addition, mobile devices can also
work in a cooperative manner for mutual assistance to solve the doubly far-near efect.

2.2.3 Atenuation of Signal Transmission. The signal transmission attenuation refers to the energy attenuation
of RF signal caused by the increasing transmission distance along with the task data blockage caused by the poor
channel state. The attenuation of RF energy transmission needs to be considered whenWPT technology is applied
in practical scenarios. To solve the above challenge, researchers leverage multi-antenna techniques such as EB
and Multi-Iput Multi-Output (MIMO) to improve energy eiciency and information transmission from point
to point [12, 14]. Due to the high attenuation of WPT and the limitation of oloading duration, improving EH
and oloading eiciency is urgent. Backscatter Communications (BC) and Intelligent Relecting Surface

(IRS) technologies are applied to WPMEC systems due to its ability to relect wireless signals so as to assist in
WPT and task transmission phases. In addition, a robust communication link can be established when the UAV is
close to the mobile user. Therefore, Unmanned Aerial Vehicles (UAVs) acting as HAPs are also promising to
improve the channel conditions between mobile devices and HAPs.

2.2.4 The High Intermitency of Renewable Energy. Although renewable energy sources such as solar, wind,
and ocean in the nature are free of charge, they have disadvantages such as high environmental impacts and
intermittency. Therefore, computation oloading and resource allocation strategies originally used for battery-
powered MEC systems are not suitable for WPMEC systems powered by renewable energy [41]. Due to the high
unpredictability of ambient EH, the energy collected in the current time slot is always assumed to be available
for use in the next time slot [60].
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To simulate the stochastic and high intermittency of renewable EH process, EH process can be modeled as an
Independent Identically Distributed (IID) stochastic process [58, 112]. Then, the energy consumed by the
current time slot for local computation and task oloading cannot exceed the sum of the energy collected by
the current time slot and the remaining energy in the battery of the previous time slot. When making resource
allocation decisions, compared to WPMEC systems based on WPT technology, those based on renewable EH
need to consider energy state information along with CSI. Moreover, the time-dependent battery energy level
couples computation oloading and resource allocation decisions across diferent time slots, requiring a good
balance between system performance in current and future time slots. Such optimization problems with mutual
coupling among time slots can generally resort to Lyapunov optimization and ML methods. The speciic details
are described in subsection 2.3.

2.2.5 The Randomness of Task Arrivals. Currently, many researchers provide a strong assumption for the process-
ing of a single computation task in WPMEC systems, i.e., the task reaches each mobile device uniformly at the
beginning of the time slot and can be resolved within that time slot [47]. The short-term performance optimization
of latency-strict tasks simpliies the computation oloading process but faces challenges in real-world applications.
When there are latency-tolerant application tasks (e.g., ile backup), the random task arrival model needs to be
considered to stabilize the long-term system performance [104].

To simulate the data arrival in practical scenarios, some researchers have designed random task arrival models
[102, 104, 131]. The task arrivals of each mobile device are independent among time slots and can be modeled as
an IID uniform distribution. Furthermore, mobile devices are generally considered to have a task arrival queue
that satisies the irst-in-irst-out processing order [47, 114]. Keep the above task arrival queue stable, and then
all tasks arriving at mobile devices can be processed in a limited amount of time. Overall, WPMEC systems based
on random task arrival models have to consider the stability of time-coupled task queues, and thus Lyapunov
optimization methods applicable to solving classical queueing problems can be considered.

2.2.6 The Order of Task Processing. To better simulate the practical scenario, it is assumed that the computational
resources of the MEC server is not ininite [17]. Therefore, the MEC server with a task bufer is leveraged for
the mobile device to store its tasks that have not yet been processed. Then, the amount of unprocessed tasks
in the current time slot is equal to the amount of oloaded tasks in the current time slot plus the amount of
unprocessed tasks in the previous time slots minus the amount of processed tasks in the current time slot. We
consider the constraint of data availability, i.e., a mobile device cannot oload more bits of data than the amount
of data stored in its task bufer.

2.2.7 The Imperfect CSI. Typically, researchers assume perfect CSI or Network State Information (NSI)

in WPMEC systems when developing task oloading and radio resource allocation policies [115]. However,
CSI/NSI estimations are all derived from the real-time feedback of the pilot signal between the mobile device
and the HAP [105]. In practical scenarios, there are signaling overheads, feedback delays, and prediction errors
regarding all the CSI/NSI predictions. Therefore, it can be considered that only the past CSI/NSI is known. In
some cases, when a mobile device needs to capture CSI/NSI estimations, the AP allocates a speciic period to
send the feedback information. The feedback is collected every � time slot, where � ∈ {1, . . . ,�}, and� is the
maximum feedback interval. Based on their asymptotic nature, stochastic optimization methods such as standard
Lyapunov optimization and stochastic gradient descent can be leveraged to improve the system performance
even when outdated CSI/NSI is used.

2.2.8 Nonlinear EH Models. There are two major types of EH models, i.e., linear and nonlinear EH ones. The
former considers that the conversion from RF energy to direct current power is a straightforward linear trans-
formation, which is an idealized model [8, 38]. Whereas, in practical applications, the collected energy power
varies nonlinearly with the input, because the collected energy tends to saturate in the high input power range
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[75, 139]. The nonlinear model is more complex than the linear one, but it is also more accurate in portraying
the EH process. Regarding the energy saturation problem in the nonlinear model, multiple EH rectiiers can be
developed [75].

2.2.9 The Selection of MEC Servers. For the mobile device, how to select a target MEC server within the wireless
communication coverage is a key research point for computation oloading [3]. Since diferent MEC servers have
diferent workloads, radio channel fading and interference, the selection of the target MEC server is important for
performance improvement. In particular, in WPMEC systems, the dynamic arrival of energy and tasks complicates
computation oloading decisions in WPMEC systems [97]. Compared to traditional mathematical approaches,
such as convex optimization, Deep Reinforcement Learning (DRL), which is highly adaptive to environmental
changes, is more eicent.

2.3 Technologies of WPMEC

To allocate system resources and develop computation oloading strategies, researchers typically formulate an
optimization problem with a key metric as the goal, and use convex optimization or ML learning techniques to
solve it. This subsection describe concepts and details related to convex optimization and ML techniques that are
often used in the latest WPMEC-related research.

2.3.1 Convex Optimization. It can provide low-complexity solutions for large-scale optimization problems. The
convex optimizationmethods commonly used inWPMEC systems include the Lagrangian dual method,Alternate
Directional Multiplier Method (ADMM), coordinate descent method, generalized Benders decomposition
method, Successive Convex Approximation (SCA) method, Dinkelbach method, and Lyapunov optimization
method.
When the optimization equation and the feasible set are convex, the Lagrangian dual method can be used

to solve this kind of optimization problems. The Lagrangian dual method belongs to one of classical convex
optimization methods, which converts the original optimization problem with constraints into an unconstrained
problem by Lagrange functions. Since WPMEC systems require joint computation oloading and resource
allocation decisions, the optimization problems are usually relatively complex. Therefore, under the conditions
of Karush-Kuhn-Tucker pairwise complementarity, the dual problem of the original optimization problem is
solved by the Lagrangian dual method [10]. ADMM is mainly used for solving convex optimization problems
with a divisible structure. It decomposes the combinatorial optimization problem into � smaller parallel integer
programming problems (� denotes the number of mobile devices), and obtains a global solution by solving �

subproblems in parallel and coordinating their solutions [8].
Coordinate descent is a linear search algorithm based on one dimension, which can ind the minimum value

along the coordinate axis direction at each iteration. However, the coordinate descent method cannot solve high-
dimensional problems. Instead, the Block Coordinate Descent (BCD) method is suitable to handle problems in
high dimensions. It can be used to separate and alternately optimize variables related to resource allocation and
computation oloading decisions until the algorithm converges. Since the optimization problem can be split into
several subproblems, the BCD method is often used to solve WPMEC-related problems with a large number of
optimization variables [48]. The generalized Benders decomposition method is a mathematical tool to decouple
complex optimization problems into small-scale subproblems. It is known that integer and nonlinear constraints
make the optimization problems of WPMEC-related systems diicult to solve. By using the generalized Benders
decomposition method, the original optimization problem can be decomposed into a master problem and a
subproblem. The master problem only has complex integer constraints and nonlinear constraint variables, and
the subproblem is only with linear constraint variables. It is worth noting that the lower and upper bounds of the
performance can be obtained by solving the master problem and the subproblem, respectively [38].
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In particular, there are also some optimization problems in the WPMEC system with non-convex objective
functions that are diicult to solve. SCA method inds a stable point as a local suboptimal solution for the original
non-convex optimization problem by iteratively solving some convex optimization problems similar to the original
non-convex problem [4]. When energy eiciency, computational eiciency, and other metrics are optimized in the
WPMEC system, the objective function usually appears as a fractional expression. Dinkelbach’s algorithm can be
widely used for solving fractional programming problems by converting the original optimization problem into
an optimization problem in the form of parametric subtraction, which can be solved by the convex optimization
method [31]. Since Lyapunov optimization theory is a classical approach used to solve queueing problems, it can
be speciically used to solve stochastic optimization problems with random arrival of tasks and time-coupled
battery energy in the WPMEC system. Lyapunov optimization method decouples the original problem into a
series of deterministic subproblems with independent time slots, which can be solved by convex optimization
methods as mentioned before [131].

2.3.2 ML. ML is usually classiied into the following three types, i.e., supervised learning, unsupervised learning,
and Reinforcement Learning (RL). Due to its adaptability to dynamic environments, ability to handle big data,
and efectiveness in problem solving, ML has been applied in WPMEC networks to improve system performance.
Compared to traditional mathematical methods, algorithms developed based on ML techniques for resource

management, computation oloading, and mobility management of WPMEC systems have two major advantages.
First, with the development and maturity of related technologies, the network topology of the WPMEC system
becomes increasingly large, and a huge amount of information need to be processed in each time slot. ML can
learn useful information from a large amount of input data. For example, convolutional neural networks in
deep learning can achieve the function of extracting sequence and spatial features from time-varying received
information [20]. Second, in practical scenarios, the network conditions of WPMEC are unknown or highly
dynamic. RL can enable real-time resource allocation and computation oloading decision making based on
trained policies. Deep neural networks, also known as function approximators, can approximate traditional high-
complexity mathematical algorithms ininitely. It is a low-complexity approach to achieve similar functions with
traditional high-complexity mathematical algorithms, thus enabling fast responses to time-varying environmental
states [109].

Generally, ML algorithms used for WPMEC systems include Q-learning and actor-critic, which maximizes the
long-term performance through continuous learning [121, 132]. Due to its model-free property, RL is often used
to train computation oloading policies for low-complexity systems, in the presence of time-varying channels
and partial system observations. In the face of large and complex WPMEC networks with a large number of
potential states, the performance of traditional RL methods may become unstable or even fail to converge [58].
Since Deep Neural Network (DNN) can be used as function approximators for RL strategies, DRL algorithms
integrating DNNs and RL can achieve dimensionality reduction in the state-action space and avoid dimensional
catastrophes. The two DRL algorithms commonly used for WPMEC systems are Deep Q Networks (DQN) and
Deep Deterministic Policy Gradients (DDPG) [34].

3 SOLUTIONS ON WPMEC

WPMEC requires a trade-of among computing, communication, and EH. Although WPT charges mobile devices
wirelessly through RF signals, the energy collected within a limited period is necessarily inite, and the energy
consumed by computation and communication needs to be reasonably allocated. Therefore, researchers need to
develop computation oloading strategies and jointly manage the allocation of energy, time, and computation
resources. In the face of various issues mentioned in subsection 2.2, several approaches can be implemented
to solve them in developing reasonable resource allocation schemes and computation oloading strategies.
These methods include time allocation strategies, user cooperation frameworks, BC approaches, IRS approaches,
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UAV-assisted frameworks, EB approaches, NOMA approaches, SWIPT approaches, queueing based solutions, and
learning based solutions. Subsequently, we summarize the latest relevant research on these solutions and give
learned lessons.

3.1 Time allocation strategies

Due to the half-duplex hardware limitation of devices, the process of collecting energy and that of oloading
task data cannot be performed simultaneously. Therefore, many researchers have focused on how to reasonably
schedule EH and computation oloading processes in the time domain.
Typically, the time division of the system considering half-duplex hardware constraints is shown in Fig. 3. A

time block with length� can be further divided into four phases, i.e., WPT phase �0, computation oloading phase
�1, the MEC server computing phase, and the result downloading phase. The computation capability of the MEC
server is much higher compared to that of mobile devices [110]. Therefore, some researchers assume that the
processing delay caused by the MEC server is negligible compared to that taken for oloading and transmitting
[8, 48]. Moreover, the size of the computation result is much smaller than that of the original task, and thus the
duration of the downloading stage is negligible [30, 116, 142]. Thereby, the time block can be regarded to include
merely WPT phase �0 and computation oloading phase �1.
In the WPMEC system, researchers consider applying time allocation strategies to solve the half-duplex

hardware constraint. For example, authors in [48] perform time allocation and computation oloading decision
making by solving the max-min energy eiciency optimization problem. By considering the half-duplex hardware
of the mobile device, the HAP is assumed to equipped with two antennas to achieve spatial separation of WPT
and receive computation task streams, i.e., mobile devices are in half-duplex operation mode while the HAP is
in full-duplex operation mode. In terms of time allocation, the antenna used by the HAP for WPT works for a
full-time slot, while the oloading process of mobile devices is in TDMA mode and each mobile device can collect
RF signals during the rest of the time when oloading is not performed.
Diferent from the study in [48], which assumes a full-duplex mode of operation for HAPs, authors in [8]

investigate the problem of oloading mode selection and time allocation when both HAPs and mobile devices
are in half-duplex modes. The time allocation is irst obtained by Dichotomous search method, and then the
coordinate descent method is used to optimize the oloading mode selection. Similar to [8], authors in [38]
also investigate the joint time allocation and task oloading problem under half-duplex constraints. However,
Diferent from the study in [8, 48], authors in [38] take both of the processing time of the MEC server and the
downloading time of the task results into consideration. The formulated optimization problem is a mixed-integer
combinatorial nonconvex optimization problem, and can be decomposed into two subproblems of computational
mode selection and communication as well as computational resource allocation, where GBD method is leveraged
to solve them.
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Unlike the previously mentioned studies dedicated to systems with one edge server, authors in [142] design
algorithms that address time allocation and computational resource scheduling in multi-server scenarios. By
considering that diferent load and channel conditions may result in diferent energy and time consumption
for task oloading, the selection of MEC servers is also modeled as an optimization problem to maximize the
computation completion rate. When time allocation is ixed, the optimization problem can be decoupled into
a generalized allocation problem and a computational scheduling algorithm, where the generalized allocation
algorithm is designed to solve them. Diferent from studies in [8, 38, 48, 142] based on linear EH models, authors
in [116] investigate time and energy optimization problems based on non-linear EH models. By considering the
diversity of tasks in wireless networks, a hybrid oloading paradigm with both partial and binary oloading is
proposed. The formulated optimization problem is transformed into two subproblems, i.e., oloading decision
making and resource allocation, which are solved by a greedy algorithm and a convex optimization method,
respectively.

Considering the advantages of ML methods in solving high-dimensional complex problems, some researchers
utilize them for time allocation and oloading decision making in WPMEC systems. DROO [30] is a DRL-based
task oloading and time allocation algorithm by considering dynamic wireless channels. Since DROO can learn
from past oloading experience and is applicable for continuous state spaces, it can solve complex mixed-integer
programming problems and does not require discretization of the channel gain. To reduce the computational
complexity of the high-dimensional action space, DROO considers an order-preserving action generation method.
Diferent from the research dedicated to centralized resource management in [30], OLD-COP [110] provides
distributed time allocation and oloading decisions in scenarios with multiple edge servers. By considering task
deadlines and energy constraints, the optimization problem is formulated to minimize the total task delay. It
takes into account the consensus of multiple edge servers for the WPT period, and each edge server performs
oloading decisions independently using its trained policy. The edge server learns and decides the processing
order of collected tasks, processes them in order, and sends them back to the target mobile device.

Lesson 1: Time allocation policies are widely used for resource allocation and computation oloading decision
making in WPMEC systems, to achieve time-domain separation of WPT and task oloading processes for solving
the half-duplex problem of devices. However, mobile devices can only perform local computing and EH during
WPT time slots. This time allocation strategy is reasonable but still has room for improvement in its time
utilization. For example, mobile devices can be divided into two types, and time utilization can be improved by
alternating WPT and task oloading between the two types of devices.

3.2 SWIPT Approaches

The half-duplex hardware constraint of the WPMEC system makes WPT and computation oloading processes
separated. SWIPT technology is introduced to improve the eiciency of spectrum utilization [24, 75, 102, 134],
which transmits energy and information data in parallel. We have briely described the corresponding receiver
architecture for SWIPT techniques in Appendix B of Supplemental File.

Diferent from WPMEC systems that leverage traditional post-collection communication protocols, authors in
[134] consider the SWIPT approach, which allows for the simultaneous transmission of information and energy.
The EH and ID modules are integrated into the mobile device, which collects energy from the SWIPT signal sent
by the HAP and decodes the information. A user scheduling framework is designed, where a time frame is divided
into multiple time blocks and only one mobile device is served in one time block. The user oloading order is
irst ixed to optimize the PS value, oloading policy, and time allocation, and then the order is selected by ixing
the PS value, oloading policy, and time allocation. However, for time-sensitive tasks, this model is not eicient
because a block of time serves only one mobile device. Diferent from the study in [134], which considers a
traditional WPMEC system, authors in [24] design a satellite IoT system that combines SWIPT approach and MEC
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technology. APs operate in the full-duplex mode and are powered by a mix of grid and renewable energy sources.
The non-convex nonlinear optimization problem with the throughput of mobile devices as the optimization
metric can be decomposed into two subproblems: i) Central Processing Unit (CPU) frequency selection of
mobile devices and task allocation, and ii) the oloading power determination.
Diferent from the study in [24, 134] where linear EH models are considered, authors in [75] study WPMEC

systems using non-linear EH models and SWIPT methods. The idea of having multiple nonlinear EH rectiiers
in mobile devices is proposed to avoid EH entering the saturation zone. When the mobile device receives the
SWIPT signal, a portion of the signal power is used for ID, while the remaining portion is distributed to multiple
EH rectiiers for energy harvesting. The optimization problem with task delay as the optimization metric can
be solved by the Lagrangian dual method. Diferent from the study in [75], authors in [102] not only consider
the nonlinear EH model and SWIPT method, but also address the random task arrival problem. Due to the
time-varying channel and the dynamic task arrival, MDP is used to describe the optimization problem to minimize
system energy consumption. An intelligent computation oloading algorithm based on DDPG is designed to
solve the control problem with the coexistence of discrete and continuous states.
Lesson 2: The design of optimization problems using the SWIPT method is focused on the formulation of

computation oloading decisions without considering the allocation of limited time resources for mobile devices.
Therefore, while optimizing the power distribution ratio of SWIPT, the conlict between WPT and oloading
duration should be relieved.

3.3 User Cooperation Frameworks

With the deployment of HAPs, WPMEC networks are susceptible to the doubly far-near efect, which directly
leads to inequities in both EH and computation oloading among users. The introduction of user cooperation
schemes can improve network eiciency and achieve good network performance for the WPMEC network. Fig.
4a shows an example of user cooperation in WPMEC networks, consisting of two users and a HAP. The user far
from the HAP is set by the Far User (FU) and that near to the HAP is the Near User (NU) [50]. Distances from
the FU and the NU to the HAP are �1 and �2 respectively (obviously, �1>�2), and the distance between the FU
and the NU is �12 (�12 < �1). Since this system is afected by the doubly far-near efect, the NU is considered to
cooperate with the FU for computation oloading to ensure system fairness [10, 31, 36, 45]. Due to the lower
oloading cost of the NU than that of the FU, the cooperative computation oloading phase can be divided into
phases �11 and �12 [28, 35]. In �11 phase, the FU oloads tasks to the NU and the HAP, respectively. In �12 phase,
the NU forwards computation tasks from the FU and its own tasks to APs. Cooperative oloading is not limited
to the use of cellular links. Authors in [95] leverage Device-to-Device (D2D) communications among mobile
devices to assist cooperative oloading in WPMEC networks. D2D communication-assisted oloading mode
is convenient and energy-eicient, since it can facilitate relaying and performing computation tasks among
neighboring devices.

To fully utilize available resources and ensure fairness among users, many researchers focus on user cooperation-
assisted WPMEC systems. In this system, computational and communication resources of users can be shared to
some degree. Existing related studies can be classiied into two categories: dual-user cooperation and multi-user
cooperation. RT-EEM [31] is a dual-user cooperative resource allocation algorithm with energy eiciency as the
optimization metric, and a collaborative oloading mechanism is designed to mitigate the doubly far-near efect.
The original optimization problem is a concave fractional programming problem, which is transformed into a
convex optimization problem in the form of parameter subtraction with the Dinkelbach algorithm and solved
by the Newton iteration, Lagrangian, and subgradient algorithms. Diferent from the study in [31], which only
optimizes time allocation, UC-JOPT [28] is a user cooperative resource allocation algorithm that jointly optimizes
energy and time. The optimization problem aiming to minimize energy consumption of APs is irst converted
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into a minimum-maximum energy consumption problem and then solved by Lagrangian dual method. A user
cooperation scheme with joint computation and time resource allocation is proposed in [35]. The introduction
of NOMA technology can lower user energy consumption, and far and near users can oload their tasks at the
same time by using NOMA in the oloading phase [28, 31].

In contrast to studies in [28, 31, 35], which consider dual-user cooperation in WPMEC systems, MRACO [36]
is a multi-user cooperative computation oloading algorithm. Tasks can be oloaded to the MEC server with the
help of neighboring nodes. The MRACO algorithm aims to determine the optimal relay device, task assignment,
and oloading power for the user. Since a mobile device selects multiple relay-assisted oloading nodes, this,
in turn, optimizes the task splitting rate. By taking the task execution time and the number of dropped tasks
as penalties, the optimization problem is a high-dimensionalMarkov Decision Process (MDP) problem. The
objective function is converted into two unrelated functions and solved separately by Lyapunov optimization
method.
The previously mentioned user cooperation models assume that the NU as a relay node is willing to help

the FU transmit task data, but this assumption is too ideal. Generally, the NU consumes its energy and storage
resources by receiving the task data oloaded by the FU and forwarding it to the HAP. Therefore, it is worth
considering how to motivate the NU to relay the task data for the FU. Authors in [45] discuss the above issues in
detail, and design EH-based incentives that stimulate NUs to act as relay nodes by collecting energy from FUs.
The study in [10] is conducted on the scenario with a single relay and multiple mobile devices, where the relay
node can help users forward and process computation tasks. To motivate mobile devices to serve as relays, an
EH-based incentive mechanism is proposed, i.e., it uses SWIPT technique and allows the relay device to receive
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oloading data while also collecting energy. By considering that simultaneous transmission of SWIPT signals by
multiple users is susceptible to interference, the NOMA technique is used in the oloading phase. This method
not only mitigates the dual far-near efect by using the relay cooperation model but also motivates mobile devices
to participate in task oloading based on SWIPT technique.

Since EH-based incentives increase the hardware cost of mobile devices (due to the need to send SWIPT signals),
other incentive mechanism can be considered to apply in the WPMEC system, such as monetary-based incentives
[54], social relationship-based incentives [96], reputation-based incentives [129], bandwidth exchange-based
incentives [117], and hybrid incentives [86].
Lesson 3: Most of existing studies assume that relay devices are willing to participate in the cooperative

oloading process, which is ideal. Fortunately, the SWIPT technique and EH-based incentives can be utilized
for cooperation. In addition, in user cooperation mode, it causes delays when the mobile device forwards task
information to other mobile devices. Therefore, the issue of choosing the appropriate relay device while ensuring
the completion of computation tasks is worthy of investigation.

3.4 BC Approaches

Active Transport (AT) refers to the process of oloading computation tasks to the MEC server via traditional
radio architectures. Since AT contains components such as power ampliiers and carrier oscillators that consume
most of the collected energy, it is diicult to reduce energy consumption of AT without afecting transmission
performance. BC refers to the process of scattering electromagnetic waves in diferent directions when electro-
magnetic waves and antennas interact. The Backscatter Device (BD) in the BC process can modulate and help
relect the input signal from the transmitter to the receiver at low energy. Therefore, BC is often used to assist
the communication process and reduce communication energy consumption. Since energy-free components are
used, the energy consumed by the transmission process using BC is several orders of magnitude less compared to
AT [144].

Due to the half-duplex limitation of the hardware, WPT duration and computation oloading duration should
be counterbalanced. When the collected energy is utilized for energy-consuming operations (e.g., computing
oloading), the mismatch exists between the collected energy and that required by mobile devices. To solve the
above challenge, authors in [66, 91, 122, 144] apply BC to the WPMEC system. Passive transmission applied with
BC consumes less energy, but is relatively dependent on a positive channel environment. AT achieves more stable
and reliable transmission by sacriicing power consumption. Thus, mobile devices can use passive transmission
and AT to jointly deal with dynamic channel scenarios. Fig. 4b shows a multi-user WPMEC system integrated
with BC, where BDs are deployed on mobile devices and can assist in the computation task oloading process.
The oloading phase is then divided into a passive oloading phase using BC and an active oloading phase
based on AT. The user can adjust load impedance to achieve lexible switching between BC oloading mode and
AT oloading mode, according to channel conditions and task delay tolerance [144].

Authors in [108] consider resource allocation of mobile devices in WPMEC networks when accessing WiFi and
cellular networks. Mobile devices connected to WiFi can transmit data to the access point with the assistance of
BC technology. Due to the limited communication range of BC, mobile devices connected to the cellular network
can only collect ambient energy and then transmit data. The formulated resource allocation problem is solved
by the Lagrangian dual method. FEA [66] is a fast and eicient resource allocation algorithm for IoT devices
based on BC and OFDMA technologies. It considers a scenario with single-user and single-BD, without paying
attention to the energy consumption of BD components. Since the complexity of this optimization problem is
high, authors optimize time division and oloading decisions under the condition of maximizing the transmit
power and the backscattering coeicient.
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Authors in [122] design a resource allocation scheme with multiple BDs and multiple users. In contrast to the
FEA method [66], which solves the original optimization problem by ixing the optimal transmit power and the
backscattering coeicient, authors in [122] optimize the transmit power and the backscattering coeicient by the
alternating optimization method. The original optimization problem is divided into two subproblems: i) the irst
subproblem is to optimize user oloading duration and oloading decisions with ixed backscattering coeicient
and transmit power; and ii) the second subproblem is to optimize backscattering coeicient and transmit power
with ixed user oloading duration and oloading decisions. Similar to [122], Hybrid-DOS [145] is a computation
oloading algorithm that takes into account energy consumption of BDs. In particular, it is assumed that both
wireless devices and BDs are powered wirelessly by the AP. In the case of suicient energy, users can choose the
active oloading mode, i.e., oloading computation tasks directly to the MEC server. Whereas, in the case of
mobile devices with insuicient energy, BC-assisted oloading is adopted. The BC-assisted oloading mode is
characterized by low rates, low power consumption, and susceptibility to channel changes, and thus the hybrid
oloading scheme adopted by Hybrid-DOS is expected to balance the conlict between the transmission rate and
energy consumption during the computation oloading phase.
Lesson 4: Although BDs are devices with a low energy level, the total energy consumption needs to be

minimized when massive BDs are deployed. Besides collecting RF signals from APs similar with mobile devices,
BDs can also collect ambient energy to maintain operations.

3.5 IRS Approaches

IRS is an artiicial surface manufactured from electromagnetic materials and is regarded as a new technology
capable of reconiguring the WPMEC environment to improve the eiciency of energy and information transfer
[4, 51, 56]. IRS can be constructed by an integrated panel, consisting of a controller circuit and some passive
relective elements with low costs. The IRS gain refers to the combination of the virtual array gain and the
relected beamforming gain, and can be achieved by adjusting the amplitude and the phase of the incident signal
with each relective element [25]. Similar to BC technology, IRS technology can also assist WPMEC systems by
relecting RF signals and oloading data. Unlike BC, IRS can establish an additional real-time communication link
intelligently through the IRS controller. Based on the feedback provided by the HAP, the IRS controller can adjust
the relection coeicient of the relective element in real-time to improve the relection eiciency. Fig. 4c shows
a WPMEC system deployed with IRS containing � relective elements, and the coeicients of each relective
element are adjusted in real-time by the IRS controller through the optimization feedback provided by the HAP.
Relection-based beamforming is performed by modifying the uplink and downlink phases to boost the eiciency
of energy transmission and computation oloading.

Authors in [4] combine IRS techniques to jointly optimize energy, time and computational resource allocation.
An IRS containing � relective elements is deployed near the device, and a portion of the RF signal and oloading
data is relected by the IRS and reaches the target side. It also applies OFDMA technology in the oloading phase
to improve the transmission eiciency. The original optimization problem is decomposed into two subproblems:
i) WPT; and ii) time division and computational resource allocation. Subproblems are solved by SCA and interior
point methods. Diferent from [4], authors in [51] design a joint time, energy, and computation resource allocation
strategy, to both minimize the IRS energy consumption and maximize the number of computation bits. The
original optimization problem is a non-convex nonlinear problem that is not easy to solve due to the coupling
among optimization variables. It is decomposed into four subproblems by using the BCD method, i.e., oloading
power and time allocation, CPU frequency selection of mobile devices, designs of downlink EB and uplink
beamforming.

Lesson 5: First, since the number of IRS is proportional to the transmission eiciency, IRS energy consumption is
not negligible in scenarios where numerous IRS components are deployed. Second, due to IRS energy consumption
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and ixed deployment locations, some IRS relection dead spots exist. It is promising to combine UAVs with IRS,
which can provide a full range of charging and computing services for mobile devices [133].

3.6 UAV-assisted Frameworks

Based on microwave Line-of-Sight (LoS) transmission, the practical scenario of ground-based wireless RF signal
transmission and data oloading is bound to have a high path loss, caused by a variety of static or dynamic
object occlusion. A robust communication link can be established when the UAV is close to the mobile device,
its transmit power is greatly reduced and the energy utilization of the transmission link is higher than that of
conventional WPT. Owing to their advantages including high lexibility and controlled mobility, UAVs are often
used as mobile relays and airborne base stations to assist infrastructure for communications [69, 72, 111, 128].
As shown in Fig. 4d, the UAV plays the role of an MEC server, which wirelessly charges � mobile devices and
provides computing services for them. Mobile devices are ixed on the ground, and the UAV lies at a ixed altitude
of � meters (�>0).

In the majority of studies on WPMEC, mobile devices charge through a ixed AP and the provision of additional
computing resources is considered. However, the coverage of the ixed AP is limited and the mobility of devices
is not negligible. Authors in [40, 138] integrate UAV communications with a WPMEC network to compensate
for the lack of ixed APs. Equipped with both high-capacity batteries and computing processors, the UAV can
provide controlled energy for ground-based mobile devices and expand their computing capabilities [40]. By
communicating over a low-path-loss link between the UAV and themobile device, both oloading and transmission
energy consumption can be reduced.
Authors in [138] investigate the UAV cooperative approach for jointly optimizing UAV movement trajectory,

energy, and computational resource allocation under partial oloading and binary oloading modes in WPMEC
networks, respectively. In this case, the UAV charges mobile devices and provides computing services. It is assumed
that the UAV is in the full-duplex mode, i.e., WPT and computation oloading are performed simultaneously,
while the mobile device is in the half-duplex mode and uses TDMA for oloading time allocation. Since the
optimization problem is nonconvex and variables are nonlinearly coupled, it is decomposed into two subproblems:
i) the design of UAV trajectory; and ii) the selection of oloading power, time allocation, and CPU of mobile
devices. They are solved separately with subgradient and SCA methods.
Unlike the study in [138] where energy consumption of UAVs is not considered, authors in [40] investigate

trajectory design, resource allocation, and computation oloading decisions for UAV cooperation to minimize
energy consumption of UAVs in the WPMEC system. Considering the randomness of tasks, mobile devices within
a time slot can be divided into active ones with computation tasks and negative ones without computation tasks.
The user cooperation model is also considered to solve the doubly far-near problem, i.e., negative devices help
with task processing and oloading. The optimization problem with UAV energy consumption as the optimization
metric is nonconvex and has highly coupled variables. SCA and alternating iterations methods are used to solve
the formulated optimization problem.

Diferent from studies in [40, 138], which utilize UAVs to act as HAPs, authors in [19] consider an IoT scenario
where both ground-based HAPs and UAVs provide charging and computing services for mobile devices. An
energy-aware resource scheduling scheme with on-demand sensing and WPT is proposed to minimize energy
consumption of IoT nodes, where IoT nodes with service requirements and the HAPs providing services are
irst identiied, and then task oloading is performed. The above studies of UAV-assisted communication and
oloading do not consider the issue of energy sources for UAVs, authors in [39] introduce the concept of UAV laser
charging. Both the UAV and the macro base station can provide computing services to ground users, with the UAV
sustained by the collection of laser energy from the macro base station. The formulated optimization problem
with UAV service time and task completion time as optimization metrics is a mixed integer nonlinear problem,
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which can be decomposed into two subproblems of UAV placement, computational resources and bandwidth
allocation, that are solved separately by convex optimization methods.
Similar to [39], authors in [29] consider laser-charged UAV-assisted WPMEC systems. The UAV serves as a

relay, assisting in task oloading and energy transmission. On one hand, the AP charges the UAV via laser, while
the UAV sends RF signals to mobile devices. On the other hand, mobile devices oload tasks to the UAV, and the
UAV considers processing these tasks or oloading them to the AP. Thus, the UAV acts as an information and
energy relay, mitigating doubly far-near efect and signal transmission fading problems. Since the optimization
problem with task completion bits as the optimization metric is non-convex and variables are highly coupled, the
formulated problem is decomposed into three subproblems, i.e., WPT power selection, time allocation, and UAV
trajectory plan, and solved by Lagrangian dual, SCA, and subgradient methods, respectively.

Lesson 6: For UAV cooperation in theWPMEC system, it is assumed thatWPT and task oloading are performed
simultaneously, without considering the half-duplex constraints of mobile devices. However, this assumption is
too ideal. To better simulate the mutual impacts among energy, time, and computational resources in real-world
scenarios, researchers need to design more reasonable resource allocation schemes for UAV cooperation.

3.7 NOMA Approaches

To improve the computation oloading eiciency in the multi-user WPMEC system, the researchers introduce the
NOMA technique. Unlike traditional multiple access technologies such as FDMA, TDMA, and OFDMA, NOMA
technology enables multiple users to share the same spectrum resources. Since NOMA technology can lexibly
allocate user communication power ratio and has a minimum transmission rate, it can even guarantee user
fairness and relieve the doubly far-near efect [23, 107, 126, 136].
Fig. 5a shows a basic two-user WPEMC system, where time and spectrum allocation among users can be

realized based on NOMA technology. Similar to subsection 3.3, it is assumed that mobile devices closer to the
MEC server and with strong channel gain are NUs, and those relatively far away from the MEC server and
with weak channel gain are FUs. During the data transmission process, the signals from the NU and the FU are
superimposed on each other with diferent power. Due to the diference in channel gain amplitudes, the system
tends to assign a larger power to the FU compared to the NU. When the MEC server receives the superimposed
signals of the NU and the FU, it performs successive interference cancellation to decode signals.
Authors in [126] introduce NOMA technology into multi-user WPMEC networks to improve oloading

eiciency in multi-user scenarios. It is assumed that both the mobile device and the HAP have full duplex
characteristics, i.e., mobile devices can oload computation tasks to the HAP and collect energy sent by the HAP.
Mobile devices are divided into multiple groups, with each group sharing a system subcarrier. The computation
oloading is performed sequentially among groups in a TDMA mode, and mobile devices within a group oload
computation tasks simultaneously on the same subcarrier via the NOMA approach.

Diferent from the study in [126] which assumes a full-duplex mode for HAPs and mobile devices, authors in
[107] consider a time allocation strategy to cope with half-duplex hardware constraints, and develop dynamic
oloading and resource allocation strategies to minimize task completion latency. The spectrum is divided into
multiple subcarriers, and the mobile device collects ambient energy to charge itself. Similar to [107], authors in
[136] leverage NOMA technology for resource allocation and oloading decisions inWPMEC systems. Meanwhile,
the nonlinear EH model is also considered. The optimization problem to maximize the computation eiciency is
solved based on both partial and binary oloading modes with TDMA and NOMA technologies, respectively. The
results indicate that the partial oloading mode and the NOMA approach are superior to the binary oloading
mode and the TDMA approach in improving the computational eiciency of the system.
The above solutions all consider APs with ixed locations, while authors in [23] apply NOMA and hybrid

beamforming techniques to maximize the computation eiciency in the UAV-assisted WPMEC system. It is
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solutions; d) learning based solutions.

assumed that the UAV operates on the millimeter wave band, and uses a hybrid beamforming structure consisting
of an analog beamformer and a digital beamformer. The formulated optimization problem is decoupled into
two subproblems, i.e., the design of UAV 3D layout, WPT and hybrid beamforming optimization. Polyhedral
annexation procedure and semi-deinite relaxation can be used to solve the above subproblems.

Lesson 7: The above-mentioned studies based on NOMA assume perfect continuous interference cancellation,
while in reality there is co-channel interference among mobile devices, and errors may occur during the imple-
mentation of continuous interference cancellation. To simulate realistic application scenarios, it is necessary
to consider the corresponding NOMA-assisted WPMEC solutions in the presence of continuous interference
cancellation scenarios with errors.

3.8 EB Approaches

Diferent from data transmission, the sensitivity of the energy transmission process in WPMEC systems is
extremely low[106]. Therefore, the increasing demand for high-powered energy signals has prompted some
researchers to use multi-antenna techniques such as EB to improve energy eiciency [104, 105, 140]. Since
beamforming technology has strict directionality, the interference caused by omnidirectional antennas radiating
in all directions is almost non-existent in EB technology. Fig. 5b shows a WPMEC system that uses the EB
approach in the WPT phase, where the AP can send multiple energy beams to charge the mobile device.

To reduce the energy transmission attenuation in the WPT phase, authors in [106] design a framework for the
WPMEC system based on the EB method. Instead of using a time allocation strategy, it is assumed that WPT
and computation oloading are performed simultaneously in the orthogonal bands. EB, CPU frequency, and the
number of oloaded bits are jointly optimized to minimize energy consumption of the AP. Diferent from the
static environment considered in [106], authors in [104] investigate the WPMEC system aided by EB methods and
with dynamic task arrivals. Speciically, it is assumed that the perfect CSI/TSI is unknown in advance, and WPT
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and computation oloading are performed simultaneously on mutually orthogonal frequency bands. Authors
irst obtain the oline solution with known perfect CSI/TSI, and then investigate the sliding window-based online
resource allocation scheme with known past CSI/TSI. Similar to [104], authors in [105] also consider the system
energy consumption when CSI and TSI are only causally known. The diference is that it investigates system
resource allocation and task oloading in terms of time-varying channels or static channels and fully known
CSI/TSI or only causally known CSI/TSI, respectively. The oline solution based on completely known CSI/TSI is
obtained by convex optimization techniques, and a heuristic online algorithm is developed when CSI/TSI is only
causally known. Similar to [104, 105], DCO [140] is an oloading strategy that considers harvesting ambient
energy and uses MIMO technology to improve oloading eiciency in WPMEC networks. The issue of high
intermittency of renewable energy and the task discard cost is taken into account, and the time averaging and
queueing problem to minimize the system cost is solved by the Lyapunov optimization method.
Lesson 8: In a WPMEC system using the EB method, the microwave signal in the designated interval used

to transfer energy is stronger than the normal RF signal and may be harmful to human health. A distributed
antenna system can be considered to improve information transmission eiciency, in which each antenna uses
relatively weak omnidirectional radiation. The radiation angle of multiple antennas can be adjusted to make
their combined efects in a speciics direction. In addition, when combined with sensor technology, distributed
antenna system can detect human blocking and dynamically adjust the antenna combination.

3.9 ueueing Based Solutions

As described in subsection 2.2, there are challenges of high intermittent EH, dynamic task arrival, and task
processing order in the WPMEC system. The above problem can be quantiied by modeling the battery energy,
arrival tasks, and processing tasks as queueing models in the system. The formulated optimization problem can
be simpliied and solved by Lyapunov optimization [17, 47, 53, 95, 114, 115, 119, 125, 130, 131]. Fig. 5c shows
a WPMEC system based on queueing models, where each mobile device is equipped with a task queue and a
battery, and the MEC server is equipped with a task queue. All queues are based on the irst-in-irst-out principle.
Speciically, it is necessary to maintain the stability of the aforementioned queues for computation oloading and
resource allocation optimization.

LYP-CEMA [130] is a resource allocation algorithm based on Lyapunov optimization. It deines the task queue
backlog at the MEC server as the amount of unprocessed tasks at the end of each time slot, by considering the
randomness of task arrivals and the execution order of tasks. The quality of service is quantiied as � , which
is the ratio of the amount of data not processed in time to the total amount of data. LYP-CEMA assumes that
each device can tolerate certain delay, varying from device to device. By introducing battery virtual queues and
quality of service virtual queues as well as decoupled process of EH and task transmission, the time coupling
and oloading decisions can be made in each time slot by Lyapunov optimization. Similar to [130], authors in
[95] design a dynamic oloading algorithm in IoT. By considering the diference in computing resources and
loads among mobile devices, they can help each other transmit or process tasks to solve the doubly far-near
problem through D2D technology. The original fractional programming problem is transformed into a stochastic
optimization problem in the parametric subtractive form by the Dinkelbach method, and further transformed
into a deterministic subproblem based on Lyapunov optimization. The deterministic problem can be solved by
three steps: i) selection of CPU frequency and transimt power for task oloading; ii) selection of WPT transmit
power; and iii) D2D link transmit power allocation.

Diferent from studies in [95, 130] where only the task queue of the MEC server is considered, authors in [131]
also pay attention to the stability of the task arrival queue and the result returning queue. The oloaded tasks
are irst stored in the task arrival queue to wait for assignment. After the edge server executes the assigned
task, the mobile device gets the result from the result returning queue. The optimization problem with energy
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consumption and latency as optimization metrics involves time-coupled energy queue, task arrival queue, and
download result queue. The average weighted sum of energy consumption and execution delay is used as a
penalty, and the EH along with the optimization of task assignment is achieved by the ODLOO algorithm based
on Lyapunov optimization.

The previously mentioned studies in [53, 95, 130, 131] all consider the resource allocation problem in a single
MEC server scenario. Diferent from them, authors in [17] consider the scenario with multiple servers and mobile
devices, in which high intermittency of renewable energy, random arrival of tasks, and the task processing
order should be addressed. DTM algorithm based on perturbed Lyapunov optimization is used to optimize
the system throughput under task queue and energy queue stabilization, transforming the complex stochastic
optimization problem into a deterministic subproblem. Similar to [17], authors in [119] investigate the problem
of distributed computation oloading and resource allocation in the WPMEC system with multi-HAPs and
multi-users. To allocate computing resources, suitable MEC servers should be assigned to users with diferent
oloading requirements. To stabilize the battery energy level and task queues, a game theory-based mechanism
for edge cloud resource allocation is irst developed. Since the game theory-based solution is computationally
complex and requires a large number of storage resources, it is not suitable for resource-limited mobile devices.
Then, it further designs an online distributed algorithm based on Lyapunov optimization to perform resource
scheduling. Similar with the DTM algorithm in [17], the above solution in [119] also address the selection of the
target MEC server.

Similar to [17, 119, 131], authors in [47] consider task oloading and energy transfer strategies under both task
arrival and task oloading bufers. Although the mobile device is powered by RF energy signals sent by the AP, the
mobile device battery level is considered and a time allocation strategy is used to solve the half-duplex problem.
A stochastic optimization problem for resource allocation with energy consumption and task completion delay as
optimization metrics is solved by the designed oloading schemes based on TDMA and FDMA, respectively. The
optimization problem is further decoupled by the Lyapunov optimization method, and then solved by the BCD
method in alternating iterations. Similar to [17, 47, 119, 131], considering the randomness of energy and task
arrivals, authors in [125] investigate the resource allocation problem for minimizing UAV energy consumption
with energy and data queue stability constraints. This optimization problem can be decoupled into a deterministic
problem for each time slot by Lyapunov optimization, and then solved by convex optimization methods.

Unlike the above papers, which assume a perfect CSI/NSI, authors in [114] design resource allocation strategies
in the case where only the past CSI/NSI is known. It also addresses key issues such as half-duplex constraints,
random arrival of tasks, and the order of task processing in WPMEC systems. An online decision algorithm
based on Lyapunov optimization is studied to solve stochastic optimization problems with the throughput as the
optimization metric. Similar to [114], a resource allocation strategy based on outdated network information in
Industrial IoT is proposed in [115]. A data age-aware scheduling mechanism is designed, and the spectrum is
shared in a TDMA mode during WPT and computation oloading phases. The data age-aware virtual queue is
introduced to transform the original problem into a stochastic optimization problem and it is decoupled by the
Lyapunov optimization method.
Lesson 9: The above approaches for queue-based stabilization in WPMEC focus on dynamic scenarios with

dynamic battery levels and random task arrivals. However, both WPT and computation oloading are afected by
time-varying wireless channels. Therefore, computation oloading and resource allocation in dynamic wireless
channel scenarios should be studied. In addition, since queue stabilization is mainly solved by the online algorithm
based on Lyapunov optimization theory without considering a priori information such as CSI and TSI, it is only
applicable to low-complexity WPMEC systems. Therefore, queueing-based solutions for large dynamic scenarios
should be investigated.
In Tables 2 and 3, we summarize optimization metrics considered in the above resource management and

computation oloading strategies for the WPMEC system based on traditional optimization methods.
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Table 2. Summary of traditional optimization for WPMEC
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[142]
Computation completion ratio max-

imization for computation scheduling

Time allocation

strategies

√ × √ √ × × √ × ×

[48]
Max-min energy eiciency opti-

mization for resource allocation

Time allocation

strategies

√ √ × × √ × √ × ×

[8]
Computation rate maximization for

binary computation oloading

Time allocation

strategies

√ × √ √ × × √ × ×

[134]
Energy minimization for

fog-assisted SWIPT networks

Time allocation

strategies

√ × × √ √ × √ × ×

[116]
Residual energy maximiza-

tion with hybrid oloading

Time allocation

strategies

√ √ × √ √ × √ × ×

[10]
Energy-eicient optimiza-

tion for relay networks

SWIPT

approaches

√ × × √ √ × × × ×

[75]
Latency minimization for SWIPT

networks

SWIPT

approaches
× × √ √ √ × √ × ×

[24]
Achievable rate optimization for

SWIPT systems

SWIPT

approaches
× × √ √ √ × √ × ×

[28]
Energy minimization for user

cooperation networks

User cooperation

frameworks

√ √ × × √ × √ × ×

[36]
Multi-relay assisted computa-

tion oloading framework

User cooperation

frameworks
× × √ √ √ × × × √

[31]
Energy-eicient optimiza-

tion for relay networks

User cooperation

frameworks

√ × × × × × √ × ×

[122]
Energy minimization for

BC-assisted networks
BC approaches

√ × √ √ √ × × × ×

[145]
Energy minimization with

BC-aided hybrid oloading
BC approaches × × × √ × √ √ × ×

[51]
Computation rate maximiza-

tion for resource allocation
IRS approaches

√ × √ × √ √ √ × ×

[4]
Energy minimization for

IRS-assisted networks
IRS approaches

√ × √ √ √ × × × ×

[23]
Computation rate maximiza-

tion for NOMA networks

UAV-assisted

frameworks

√ × √ √ √ √ × × ×

[39]
Task completion time mi-

nimization for UAV networks

UAV-assisted

frameworks
× × √ √ × × × × ×

(ł
√
ž if the soultion satisies the property, ł×ž if not)
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Table 3. Summary of traditional optimization for WPMEC (cont.)

Ref. Description Solutions

Optimization metrics
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[29]
Computation completion bits max-

imization with cooperative UAVs

UAV-assisted

frameworks
× √ × √ × × √ × × ×

[40]
Energy minimization for

UAV-assisted networks

UAV-assisted

frameworks
× × √ √ √ × √ × × ×

[138]
Computation rate maximiza-

tion in UAV networks

UAV-assisted

frameworks
× × √ × √ × √ × × ×

[125]
Energy minimization for EH

networks

UAV-assisted

frameworks
× × √ √ × × √ √ √ ×

[104]
Energy minimization for task

causality resource allocation

EB

approaches
× × √ √ √ √ × √ √ ×

[105]
Energy minimization for online

resource allocation

EB

approaches
× √ × √ × √ × √ × √

[35]
Energy minimization for

NOMA-assisted networks

NOMA

approaches

√ × √ √ √ × × × × ×

[137]
Computation eiciency max-

imization scheduling

NOMA

approaches

√ √ √ × √ × × × × ×

[107]
Latency minimization for

NOMA-assisted networks

NOMA

approaches

√ × √ √ √ × × × × ×

[140]
Latency minimization for

MIMO-assisted networks

NOMA

approaches
× × √ √ × √ × × √ ×

[53]
Latency minimization for on-

line computation oloading

Queue based

solutions
× × √ √ √ × × × √ ×

[114]
Throughput maximization for

industrial IoT networks

Queue based

solutions

√ × × √ √ × √ × √ √

[17]
Throughput maximization for

online resource allocation

Queue based

solutions
× × √ √ √ × × √ √ √

[115]
Throughput maximization for IoT

resource scheduling

Queue based

solutions

√ × × √ × × √ √ × ×

[47]
Computation oloading and

resource allocation

Queue based

solutions

√ × √ × √ × × √ √ √

[131]
Energy eiciency and delay tra-

deof for dynamic oloading

Queue based

solutions
× × √ √ √ × × × √ ×

[95]
Energy eiciency optimiza-

tion in D2D networks

Queue based

solutions
× √ √ × √ × × × √ ×

[130]
Energy minimization for resource

allocation

Queue based

solutions
× × √ √ × × × √ √ ×

[119]
Energy consumption and latency

tradeof

Queue based

solutions
× × √ √ × × × √ √ ×

[37]
Throughput maximization for

cognitive data sensing

Queue based

solutions
× × √ √ √ × × × √ √

(ł
√
ž if the soultion satisies the property, ł×ž if not) ACM Comput. Surv.



24 • Xiaojie Wang, et al.

3.10 Learning Based Solutions

The existing issues such as the unpredictability of EH, the randomness of computation task arrivals, rapidly
changing channel states, and the selection of target MEC servers in distributed WPMEC systems make resource
allocation and computation oloading problems challenging to solve. Considering that the ML method is more
responsive to the time-varying system in real-time than the traditional method because of its adaptability to the
dynamic environment and low complexity of the algorithm. Therefore, researchers consider using RL and DRL
methods to solve computation oloading and resource allocation problems for WPMEC [11, 58, 97, 113, 121, 132].
Fig. 5d shows aWPMEC system based on the learningmethod. In this scenario, mobile devices harvest energy from
the environment and obtain computing sevices from multiple MEC servers. MEC servers deploy intelligent agents
that can learn from past experiences to make intelligent decisions. Due to issues such as the high intermittency
of renewable energy, random arrival of tasks, and selection of edge servers, intelligent resource allocation and
oloading decision making is important for mobile devices to adapt to such dynamic environments.
To cope with the randomness of channel states, energy and task arrivals, authors in [113] investigate Q-

learning-based resource allocation and computation oloading algorithms in IoT. Task prioritization and energy
limitation of the mobile device are considered. The ambient EH model for the mobile device is modeled as an IID
random process, and the oloading process is modeled as a continuous MDP. Since the state space of continuous
MDPs contains too many elements, this computation oloading scheme focuses on post-state decisions, and
deines the corresponding post-states with smaller spaces according to the state-action pairs.
Instead of considering a single mobile device similar with [113], DRLCCDCO [132] is an oloading and

computational resource allocation algorithm for multiple mobile devices. Each mobile device is equipped with a
queue of computation tasks, and the tasks for the current time slot may contain the remaining tasks from the
previous time slot. By modeling the arrival of tasks within a time slot as IID poisson processes, mobile devices
can dynamically adjust the local CPU frequency to control time and energy consumption. The continuous control
problem is designed with the system execution time and energy consumption as optimization metrics, which
is then formulated as a multi-intelligent continuous decision process due to the mutual inluence of decisions
among mobile devices. The DDPG-based DRLCCDCO algorithm is designed to learn centralized policies by
coordinating among mobile devices and executing in a distributed manner. Similar to [132], GCN-DDPG [11] is
also a DDPG-based computation oloading and resource allocation algorithm for dynamic environments. Unlike
traditional DDPG methods, GCN-DDPG combines graph convolutional networks and DDPG, and has the ability
of graph-based relational derivation and the self-evolutionary ability of empirical training.

Diferent from the study in [11, 132], which considers a centralized MEC server in the system, authors in [121]
investigate resource allocation and oloading decision making in the WPMEC system with multiple MEC servers.
It is assumed that both MEC servers and mobile devices are powered by environmental energy harvesting, and
MEC servers are also constrained by dynamic battery energy levels. Compution tasks can be processed through
the collaboration of multiple MEC servers. Dynamic oloading and edge server provisioning decisions can be
formulated in real time based on the battery level of the mobile device, the state of wireless channels, and the
number of computation tasks. To overcome the high-dimensional problem caused by the increase of the state
space, the post-decision state is used in the design of the RL-based algorithm.

Similar to [121], RLO [58] is RL-based computation oloading algorithm for single-user, and multi-edge server
scenarios. The RLO scheme develops rewards in terms of latency, energy consumption, and task failure, and
selects the current target MEC server and the oloading rate in real-time based on the learning model. Since
the performance of the RLO scheme degrades severely as the dimensionality of the action state space increases,
authors in [58] design a DRL-based oloading scheme, named DRLO, to improve system performance. The DRLO
uses a deep neural network to downscale the action state space, improving the oloading performance in large
action space scenarios.
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Table 4. Summary of ML for WPMEC

Ref. Description Solutions

Optimization metrics
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[110]
Latency minimization for distri-

buted computation oloading

Learning based

solutions

√ × √ × × × √ × × √

[22]
Computation rate maximiza-

tion for UAV networks

Learning based

solutions
× √ √ √ √ × × × × √

[97]
Energy consumption and delay

tradeof for computation oloading

Learning based

solutions
× × √ × × × √ × √ ×

[121]
Latency minimization for dy-

namic resource management

Learning based

solutions
× × √ × × × √ √ √ √

[132]
Energy consumption and delay

tradeof for computation oloading

Learning based

solutions
× √ √ √ × × × √ √ √

[58]
Energy minimization for IoT

networks

Learning based

solutions
× × √ × × × √ × √ √

[30]
Computation rate maximiza-

tion for resource allocation

Learning based

solutions

√ × √ × × √ × × × √

[113]
Latency minimization for

computation oloading

Learning based

solutions
× × √ × × × × √ √ ×

[11]
Energy consumption and delay

tradeof for computation oloading

Learning based

solutions
× √ √ √ × × × × √ √

(ł
√
ž if the soultion satisies the property, ł×ž if not)

Similar to [58], DQNN [97] is a DRL-based computation oloading algorithm that determines oloading rates
of mobile devices and the selection of edge servers. Speciically, the optimization problem is treated as an online
sequential decision making problem, and the DQNN algorithm is developed by combining the RL approach
and noisy neural networks. Since noise is added to each linear layer of the neural network, DQNN can learn
perturbations in network weights to automatically adjust the noise level explored by the agent. The above studies
in [58, 97, 121] address the issues of random arrival of channel state information, highly intermittent renewable
energy, and the selection of MEC servers. We summarize resource management and computation oloading
policies based on ML for the WPMEC system in Table 4.
Lesson 10: Studies based on ML in WPMEC systems try to resolve issues such as time-varying wireless

channels, dynamic battery levels, and the selection of target MEC servers. The ML-based solution can develop
optimized network policies by learning past information, i.e., the selection of edge servers, oloading rates, and
the allocation of computational resources. Due to its model-free property, RL is often used to train computation
oloading policies for low-complexity systems, in the presence of time-varying channels and obtained partial
system information. In the face of large network scenarios with the high-dimensional state-action space, the DRL
method is promising to realize the dimensionality reduction of the state-action space and avoid the dimensional
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disaster. However, DRL has the drawback of over-adaptation and is not suitable for the environment with rapidly
changing wireless channels.

Comparisons among the above approaches can be found in Appendix C of Supplemental File. It is worth noting
that the above approaches are not completely independent, and their combination can bring broader application
scenarios and better system performance.

4 RESEARCH CHALLENGES AND OPEN ISSUES

In previous sections, we have summarized recent research on resource allocation and oloading strategies in
WPMEC. However, there are still some unresolved issues and research challenges. In the following, we elaborate
on them subsequently.

4.1 Improved Technologies for WPMEC

Traditional optimization methods tend to solve problems in WPMEC systems with a static environment, ap-
proximating the optimal solution through a complex mathematical process. However, in realistic scenarios,
time-varying channel conditions, dynamic task arrival and battery energy levels need to be considered. Although
Lyapunov optimization can be used to solve the resource allocation problem by modeling task arrivals and
processing as queueing models, merely an approximate optimal solution can be obtained [112]. By considering
that the RL method can continuously update the strategy through experience replay during the training process
until the network achieves the desired performance, it is possible to use the RL method to compensate for
the shortcomings of Lyapunov optimization in solving the problem. Consequently, researchers can consider
combining Lyapunov optimization and RL to make optimal choices in real-time while ensuring system stability
[6].

Furthermore, the dynamic battery energy level causes optimization variables coupled with each other. Using
traditional optimization methods to decouple optimization variables may increase the complexity of the solution.
Multiple neural networks can be used to simulate complex and coupled mathematical formulations and achieve
a low-complexity solution compared to traditional optimization methods [100]. In addition, constant channel
states are always assumed to exist in WPMEC networks when traditional optimization methods are appied
[144]. Therefore, it is worthwhile to investigate how to improve traditional optimization methods to deal with
time-varying channel conditions in WPMEC systems.
Compared with traditional optimization methods, the ML-based approach is more suitable for intelligent

resource management in large-scaleWPMEC systems. However, existingML algorithms still deserve improvement
for WPMEC systems. First, classical learning algorithms (e.g. random forest, k-nearest neighbor and kd-tree)
usually have a high time complexity which does not satisfy the real-time requirements in practical scenarios
[77, 80]. Thus, how to reduce their time complexity for the application in WPMEC systems deserves further study.
Second, due to high-dimensional action sets in the WPMEC system, sometimes both discrete and continuous
actions are included. In this case, it is possible to consider designing ML-based algorithms that can handle
both discrete and continuous actions. Finally, the classical empirical replay technique uses randomly extracted
memory samples to update the model parameters, which leads to a situation where many valuable samples are
not efectively utilized. Consequently, some prioritized experience replay techniques (e.g., SumTree structures)
can be considered to improve algorithm performance in WPMEC systems [123].

4.2 UAV-assisted WPMEC

The UAV-assisted WPMEC system has attracted a lot of attention, since it can leverage UAVs with controlled
mobility to provide ubiquitous charging and computation oloading services for mobile devices. However, there
are still some challenges in UAV-assisted WPMEC. Many studies leverage UAVs for wireless charging of mobile
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devices. But so far, how to extend the operating time of UAVs is still an issue that needs to be considered. Although
some studies consider integrating the laser charging technique with UAVs [26], the use of high-energy lasers
may produce gases and noises that can harm the environment and the human body. Consequently, laser-based
wireless charging must be performed in a relatively airtight environment and is not suitable for open space
scenarios.
In addition, there are some challenges in the trajectory and scheduling optimization of UAVs. For example,

although many papers have studied the UAV trajectory optimization problem, they generally assume that the
UAV lies at a ixed altitude and do not consider its response strategy when encounters obstacles. Therefore, it
is necessary to develop intelligent 3D trajectory optimization algorithms for UAVs. In large WPMEC networks,
multiple UAVs are required to cooperate to serve mobile devices. However, there is a lack of incentive algorithms
to make UAVs cooperate in an eicient way [118].

4.3 Time Allocation for WPMEC

Time division and allocation has been widely noticed by the WPMEC research community. On-demand energy
and computing service provisioning can be achieved by allocating limited time resources toWPT and computation
oloading. Although the time allocation scheme under static wireless channels is valid, there are still some
challenges for that under dynamicwireless channel conditions. The current studies on UAV-basedWPMEC systems
assume that WPT and computation oloading can all be performed simultaneously and without interference on
orthogonal frequency bands, which is too ideal. By considering time allocation under the half-duplex hardware
constraint, the joint design of WPT and oloading time can better simulate the relationship among energy, time,
and computational resources in actual UAV-based WPMEC systems.
In addition, time-coupled variables, such as dynamic battery levels and random task arrivals, are considered

in the dynamic wireless channel scenario. On one hand, most relevant studies consider the use of renewable
energy sources for charge supply and assume simultaneous ambient EH and computation oloading. On the
other hand, a few relevant studies are dedicated to systems using RF energy. However, these studies either ix the
WPT period in advance or do not consider the allocation of WPT time. Therefore, it is a challenge to design time
allocation schemes for dynamic wireless channel scenarios.

4.4 Energy Harvesting and Transmission for WPMEC

Although energy harvesting and transmission in WPMEC systems can be improved by BC, IRS, EB, and UAV
cooperation approaches, there are still some open issues in practical applications.

4.4.1 Selection of Energy Source. Although renewable energy sources such as solar, wind and ocean are freely
available from the nature, the equipment for energy harvesting has the disadvantages of signiicant environmental
impacts and high deployment costs. The WPT technology provides stable and reliable energy supplies, but the
energy signal attenuation is high and the energy transmitter needs to be powered by the grid energy. Therefore,
how to integrate renewable EH technology with WPT technology to design the hybrid energy supply mechanism
deserves to be investigated. However, resource allocation and computation oloading strategies with hybrid
energy supply becomes more complex. In addition, in most scenarios with renewable EH, the long-term cost of
harvesting ambient energy, i.e., the expense of EH equipment and the energy consumption of the EH process, is
not considered.

4.4.2 Multi-Antenna Technologies. There are challenges in mitigating energy degradation in the WPT phase.
Although some studies have considered EB and MIMO techniques in WPMEC systems [140], almost all of them
consider perfect CSI by default. However, in fact, the CSI estimation accuracy is proportional to the consumed
resources. The trade-of between resource consumption for the estimated CSI and the EB gain needs to be
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considered in WPMEC systems. In addition, since EB technology concentrates energy in a speciic orientation,
it needs to take account of fairness issues in multi-user scenarios [57]. The MIMO technology requires the
deployment of multiple antennas on the mobile device side, and the size of the energy receiver at the mobile
device side needs to be taken into account within the constraints of manageable costs and system performance
[16].

4.4.3 Impact of Mobility. In practical scenarios, the mobility of users is not negligible [124]. The frequent
movement of users may lead to rapid changes in the channel state between the mobile device and the AP. Then,
it is necessary to design dynamic and adaptive resource allocation algorithms. By regarding the doubly far-near
problem in WPMEC networks caused by ixed HAPs, it is possible to consider deploying APs with mobility.
Authors in [42] investigate the impact of APs on user energy gain with both of the edge mobility model and
center-to-center mobility model. In addition, to ensure the fairness of gain for all users, the signal transmitting
power and the distance between APs and users need to be balanced. What’s more, researchers can also consider
vehicles with mobility as HAPs [27].

4.5 Security Issues in WPMEC

At present, there are merely a few studies focusing on the security of WPMEC systems, and two kinds of security
issues are important in WPMEC systems, i.e., privacy and radiation security. We elaborate them as follows.

4.5.1 Privacy. In WPMEC networks, privacy issues are important, but always ignored. On one hand, to avoid
privacy leakage, some sensitive tasks (e.g., online healthcare) cannot be completely oloaded to the edge server.
When selecting the target edge server, it is necessary to verify its identity, because a malicious MEC server can
take the opportunity to steal information. On the other hand, mobile devices generally use weak encryption
schemes to keep the cost controllable, and are vulnerable to information cloning and tampering. Consequently, in
a user-cooperative WPMEC scenario, it is important to verify the trustworthiness of mobile devices. In addition,
intervening attacks (relay manipulation or misuse of information) can destroy the information integrity during
the task oloading process [82]. Quantum resistance authentication is suitable for resource-constrained mobile
devices in WPMEC systems because of its low cryptographic primitive overhead [55].

4.5.2 Radiation Security. The intense RF exposure may heat materials of limited electrical conductivity (including
biological tissue) [64]. Studies in [65] indicate that RF exposure in radio communications is safe, but there are
genetic efects when RF reaches the upper international safe level. Therefore, there is a lack of research on the
safety of deploying high-powered dedicated RF energy emitters.

5 CONCLUSIONS

In this article, we provide a comprehensive and speciic review of research onWPMEC, which is a deep integration
of MEC and WPT. Speciically, we review basic models, existing issues and key technologies of WPMEC. Next,
we summarize the latest research related to resource allocation and computation oloading in WPMEC systems.
Finally, we point out some research challenges and future research directions. We believe that this article will
facilitate the further development of WPMEC because it will be an important building block for future wireless
networks to achieve energy self-suiciency and intelligent operation of devices.
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