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Unmanned Aerial Vehicles (UAVs) play an important role in the Internet of Things (IoT), and form the paradigm

of the Internet of UAVs, due to their characteristics of lexibility, mobility and low costs. However, resource constraints

such as dynamic wireless channels, limited battery capacities and computation resources of UAVs make traditional methods

ineicient in the Internet of UAVs. The thriving of Mobile Edge Computing (MEC) andMachine Learning (ML) is of great

signiicance, and is promising for real-time resource allocation, trajectory design and intelligent decision making. This survey

provides a comprehensive review of key technologies, applications, solutions and challenges based on the integration of MEC

and ML in the Internet of UAVs. First, key technologies of MEC and ML are presented. Then, their integration and major

issues in the Internet of UAVs are presented. Furthermore, the applications of MEC and ML in the Internet of UAVs under

urban, industrial and emergency scenarios are discussed. After that, this survey summarizes the current solutions for MEC

and ML in the Internet of UAVs based on the considered issues. Finally, some open problems and challenges are discussed.
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1 INTRODUCTION

With the advent of the Six-Generation (6G) era, the Internet of Things (IoT) is booming [87], and various
services and applications are emerging, including information recognition, driverlessness, and navigation [116].
The IoT can integrate multiple application areas including transportation, health, agriculture and medical care,
and complete the automated interoperability of information inside. This makes the amount of data processed by
the IoT increasingly incremental, and causes practical applications be more and more complex [74]. It also brings
about many issues, such as insuicient wireless channels due to the steep increase in the number of IoT devices,
and ultra-low latency requirements of IoT applications [75].

The Unmanned Aerial Vehicle (UAV), as a tool that has gradually developed and matured in recent years, is
active in various ields with its, lexibility and relatively low costs [62]. It can not only provide a non-contact
solution to the COVID-19 epidemic in recent years [75], but also become a tool to solve problems in many ields,
such as post-disaster reconstruction, traic condition detection, and target tracking [109]. The advantages enable
UAVs to act as data collectors and Edge Servers (ESs) in IoT systems [73], providing storage and computation
services for some special or urgent scenarios [128]. Therefore, UAVs can be integrated with IoT devices to extend
services from the ground into the air, forming the Internet of UAVs.

Mobile Edge Computing (MEC) is one of the most widely studied technologies in recent years [110], and has
an excellent performance in terms of resource allocation eiciency and latency [111]. However, it is diicult to
provide the infrastructure for MEC in remote and mountainous areas. Moreover, under an emergency scenario like
a disaster, the deployment of ixed computing devices is too costly and not easy for installation [134]. Fortunately,
UAVs can be utilized in areas with poor infrastructure to provide communication and computing services for
users.

Meanwhile, integrating Machine Learning (ML) with the Internet of UAVs is promising to realize intelligent
decision making and perception capabilities [6], which are eicient in solve complex problems, such as UAV
trajectory optimization [119]. However, due to the time-varying channel environment in the Internet of UAVs, it
is diicult for computation as well as communication resource allocation and task scheduling in the Internet of
UAVs merely relying on traditional optimization methods, especially with fast fading channels [31]. In addition,
dynamic task arrivals and heterogeneous devices in the Internet of UAVs complicate the oloading decision [36].
What’s more, the limited computation resource of UAVs makes ML lack of suicient resources for training or
inference. Fortunately, the integration of MEC and ML can complement each other, and two network architectures
can be formed, i.e., ML-enabled MEC and MEC-enabled ML. The former enables reasonable oloading decision
making for dynamically generated tasks, and the latter allows ML to be executed on devices with insuicient
computation resources.

1.1 Prior Related Surveys

In recent years, a number of surveys summarize the state-of-the-art of the Internet of UAVs. Some studies focus on
applications in the Internet of UAVs. For example, authors in [25] summarize the civil applications of the Internet
of UAVs, analyze their characteristics and metrics from the perspective of communication and networking, and
present the feasibility of integrating existing technologies with the Internet of UAVs. Authors in [68] study
advantages and applications of UAVs in wireless communication networks, and provide some key challenges, such
as UAV deployment and wireless channel modeling. Authors in [95] study UAV applications in cyber-physical
systems, and discuss challenges and corresponding solutions.
In addition, there are some studies focusing on technologies used in the Internet of UAVs. Authors in [16]

summarize the types of UAVs and challenges in cellular UAV networks, discuss the interference problem, and
provide a physical security model for UAV-assisted cellular networks. A classiication of issues in the Internet of
UAVs is given in [22], and routing protocols developed to accommodate highmobility, lexibility, link variation, and
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power limitations are discussed. Authors in [100] analyze problems and challenges arising from the integration
of the Internet of UAVs and the commerce, and propose a set of relevant regulations at social and commercial
levels. Authors in [67] study how to leverage game theory to realize the coordinated control of UAVs in wireless
networks, and present their own insights on these solutions. Besides, authors in [28] conduct an extensive study
on ML applied to the Internet of UAVs from trajectory control and resource allocation perspectives.
Although the above studies have surveyed the Internet of UAVs from diferent aspects, the integration of

MEC and ML in the Internet of UAVs and its applications have not been comprehensively studied.

1.2 Contributions

In this survey, we summarize technologies, applications, solutions and challenges of ML and MEC in the Internet
of UAVs. According to the mutual support of MEC and ML in the Internet of UAVs, the integration of MEC and ML
can be divided into ML-enabled MEC and MEC-enabled ML. The former supports MEC for intelligent decision
making, and the latter supports inference and training oloading of ML. Speciically, the main contributions of
this survey are as follows:

• We irst present technologies of MEC and ML in the Internet of UAVs and specify their integration. Then, we
summarize the key issues of MEC and ML in the Internet of UAVs. We conduct a comprehensive overview
of related hot topics through the analysis of key issues.

• We present applications of the Internet of UAVs with the integration of MEC and ML in urban, industrial
and emergency scenarios and provide a detailed introduction for each kind of applications. It demonstrates
the important role in industrial areas and that of people’s daily life provided by the Internet of UAVs, and it
is promising to extend the corresponding applications, such as city surveillance and IoT data analysis.

• We summarize and categorize solutions for key issues of MEC and ML in the Internet of UAVs and
provide corresponding lessons. In addition, we compare state-of-the-art solutions to classify diferent
research focuses and applied technologies. In addition, we provide lessons to summarize the progress and
shortcomings of the current studies.

• Finally, we discuss research challenges and provide several open issues for the Internet of UAVs based on
ML and MEC, providing an overview of future research directions in the current state-of-art.

1.3 Structure

This survey is organized as follows: In Section 2, we focus on the technologies of MEC and ML in the Internet
of UAVs, and introduce the architecture and issues of the integration of MEC and ML; In Section 3, we discuss
applications of the Internet of UAVs with the integration of MEC and ML in diferent scenarios; In Section 4, we
introduce the solutions in the Internet of UAVs with the integration of MEC and ML; Some research challenges
and open issues are provided in Section 5; Finally, this article is summarized in Section 6.

2 TECHNOLOGIES FOR MEC AND ML IN THE INTERNET OF UAVS

In this section, we present key technologies and the integration of MEC and ML in the Internet of UAVs. First,
this section details MEC in the Internet of UAVs. Second, brief introduction and categories of ML in the Internet
of UAVs are discussed, and lessons of MEC and ML applied in the Internet of UAVs are summarized. Finally, we
discuss the integration of MEC and ML in the Internet of UAVs, and provide corresponding architectures and
research issues.

2.1 MEC in The Internet of UAVs

As shown in Fig. 1, with the development of IoT, ESs can be utilized to provide computation resources for
on-ground users to meet their computation demands [72]. To realize MEC in the Internet of UAVs, four key
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Fig. 1. Computation ofloading architecture in the Internet of UAVs.

aspects need to be considered: a) computation task oloading; b) UAVs acting as ESs; c) collaborative scheduling
among UAVs; and d) channel enhancement. In the following, we describe them in detail.

2.1.1 Computation Task Ofloading. Generally, computation task oloading can be divided into complete of-
loading and partial oloading. Complete oloading, also known as binary oloading, means that the entire
computation task is fully handled by ESs [64], and can be used for tasks that are simple or can not be parti-
tioned [65]. Partial oloading means that some parts of the task are selected for oloading, and the remaining
parts are processed locally [73]. UAVs are deployed in heterogeneous IoTs, and tasks have diferent accuracy
requirements [5]. Binary oloading is suitable for tasks with high accuracy requirements, such as channel estima-
tion, while partial oloading is suitable for tasks with high computation demands and relatively low accuracy
requirements, such as image processing [135]. Generally, partial oloading consists of roughly six steps. First, it
is necessary to ind nearby available ESs. Then, the task is partitioned. After that, IoT devices interact with UAVs
to estimate whether the completion latency meets the requirement. If so, the task is transmitted [138]. The next
step is task processing by ESs. Finally, results are returned to the device [64].

2.1.2 UAVs Acting As ESs. In the Internet of UAVs, UAVs are usually leveraged as ESs to provide computation
services to terminal devices. However, UAVs are small in size and have limited computation capacity [43].
Spectrum and channel resources for UAVs are limited [44], causing severe interference between UAVs and users.
In addition, after the oloading decision is made, it is necessary to consider how many computation resources
are allocated to handle the task [90]. This makes the allocation of computation and communication resources
rather complex when UAVs act as ESs. Furthermore, we need to consider the dynamic number of users and the
amount of tasks in the Internet of UAVs when solving the computation and communication resource allocation
problem, since load balance needs to be considered among UAVs [120].

Computation resource allocation can be classiied into the case with single and multiple edge nodes. When a
single edge node serves multiple users, we need to consider whether its own computation resources can meet the
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Fig. 2. Time slot division in the TDMA-based scheme [138].

requirements of users, how to improve service eiciency, and how to minimize the total task completion delay.
When multiple nodes serve multiple users, we need to consider how to integrate these computation resources
to reduce the task completion latency and minimize energy consumption [64]. In addition, we need to balance
energy consumption and latency to avoid the performance collapse of other aspects caused by pursuing one
aspect too much [85]. What’s more, the lexibility of UAVs allows them to utilize idle resources to improve
computation eiciency, and thus UAVs can serve as both relays and ESs.

The allocation of communication resource focuses on how to improve spectrum utilization and reduce channel
interference. Generally, Time Division Multiple Access (TDMA) is adopted, as shown in Fig. 2. Considering
UAVs as ESs, a time block with length � is partitioned into � time slots, each of which with length � = � /� .
Each time slot is then divided into sub-slots with duration �� , and these sub-slots are allocated to IoT devices
for communication [120]. Furthermore, considering UAVs as both ESs and relay nodes, further division with
three sub-sub-slots is performed on the sub-slot. In the irst one, tasks from IoT devices are oloaded to UAVs. In
the second one, computation tasks are processed by UAVs. Tasks are forwarded to ESs for processing by UAVs
as relay nodes in the third sub-sub-slot [138]. In addition, technologies such as Non-Orthogonal Multiple

Access (NOMA) and Orthogonal Frequency Division Multiple Access (OFDMA) can also be applied to the
Internet of UAVs to improve spectrum utilization [46]. Compared with TDMA, NOMA enables multiple users to
share a common channel, despite costly anti-interference treatment at the receiver or transmitter [120]. OFDMA
achieves multiple access by assigning orthogonal subcarriers to diferent users [138].

2.1.3 Collaborative Scheduling among UAVs. The service capacity of a single UAV is limited to meet the com-
putation demand of a large number of IoT users in the Internet of UAVs. When multiple UAVs provide services
simultaneously for the IoT, without reasonable trajectory design and resource scheduling [126], some UAVs may
be overloaded, while others are even in the idle state. This dramatically afects the performance of the Internet of
UAVs and wastes the valuable resources of UAVs. It is also necessary to consider the security of multiple UAVs to
avoid collisions among UAVs while performing computation oloading [41]. In the collaborative scheduling of
multiple UAVs, researchers focus on how to coordinate the locations of multiple UAVs to maximize the service
coverage, and how to improve resource utilization eiciency and reduce the total energy consumption of the
system. Generally, IoT nodes are unevenly distributed, which means that the trajectory design of UAVs can have
a great impact on Quality of Service (QoS) [126]. In addition, the trajectory overlap among UAVs, i.e., trajectory
coupling, needs to be considered [140].
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2.1.4 Channel Enhancement. In the Internet of UAVs, UAVs perform computation oloading in dynamic wireless
communication networks, where the network environment and channel conditions are constantly changing. It
severely afects the oloading eiciency and delay. Therefore, channel enhancement is needed. In traditional
UAV-enabled MEC networks, the Line of Sight (LoS) channel between the UAV and the user is generally
established by changing the position of the UAV to improve channel conditions. In this process, it is necessary to
pay attention to UAV propulsion energy consumption and the waiting time of users to avoid the ignorance of the
lifetime of UAVs and the network QoS. In addition, Intelligent Relecting Surface (IRS) can be deployed on
the surface of buildings to enhance UAV communications. Speciically shown in Subsection 2.3.3.

Lesson 1: The rise of MEC technology is extremely important for UAVs, which canmake use of idle computation
resources at the network edge. This enables UAVs as ESs to serve IoT devices, and meet computation requirements
of some special scenarios. In summary, UAV-enabled MEC systems have three advantages:
Real-time: The lexible and easy-to-deploy features make UAVs possible to provide timely data processing

services for IoT devices [2]. UAVs’ real-time provision of computation services increases the applicability of MEC.
Distributed: Unlike the traditional BS deployment, UAV deployment is relatively much more lexible. In other

words, it can be distributed to achieve oloading scheduling [75], which can not only reduce the system cost, but
also enhance the system stability.

Mobility: UAVs can move around during the execution of computation oloading, so the trajectories of UAVs
need to be optimized [120] to improve resource utilization eiciency.
Although MEC brings many beneits to UAVs, it also causes some problems accordingly. For example, the

energy limitation of UAVs restricts the lifetime of UAVs and requires particular attention in UAV-enabled MEC
systems. In addition, UAVs acting as ESs need to communicate with a large number of IoT devices. The spectrum
resources are insuicient, and resource allocation techniques need to be adopted to improve spectrum utilization
eiciency. Moreover, channel conditions of UAVs are dynamic during light, which afects communication quality.

2.2 ML in The Internet of UAVs

In this section, we provide a brief introduction of ML in the Internet of UAVs, classify and discuss learning
algorithms applied in the Internet of UAVs.

2.2.1 Brief Introduction of ML in The Internet of UAVs. The volume of data in the Internet of UAVs is too large
and diicult for traditional methods to process [28]. ML is widely used in the Internet of UAVs to handle high
dimensional data. It can be mainly leveraged for power and energy allocation, communication resource allocation,
light control, target identiication and monitoring [26], which are described as follows:
Power and Energy Allocation: Due to the high mobility and limited battery capacity of UAVs, power and

energy allocation is an important issue. It requires global information of UAVs, such as channel state, but it is
diicult to obtain them completely in a dynamic UAV network actually. Power and energy allocation strategies
can be obtained in the ML-enabled MEC network through the interaction with the dynamic environment to
improve energy eiciency.

Communication Resource Allocation: The spectrum resource is scarce and the changes of UAV locations
afect the channel environment. ML can regulate the communication resource allocation strategy according to the
changes of the channel environment, UAV location and the number of users to optimize system performance [78].
Flight Control: UAVs have complex lying environments and may ly in built-up cities, forest, hills, etc. ML

can help UAVs intelligently adjust their altitudes, directions and light speeds to ensure the safety of UAVs.
Target Identiication: The image data acquired by UAVs are vulnerable to the environment, the light pose

and scale transformation, and ML is able to process these data eiciently, making it possible to use UAVs for
target recognition.
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Fig. 3. ML-enabled MEC architecture.

Region Surveillance: ML also enables UAVs to have the capability of urban and environmental surveillance,
such as the surveillance of forest ires, and the monitoring of urban road congestion. Speciically, ML can process
the data collected by UAVs and extract features to obtain timely state information of the monitored environment.

2.2.2 Algorithms of ML in The Internet of UAVs. Currently, ML applied in the Internet of UAVs mainly includes
three categories: Deep Learning (DL), Reinforcement Learning (RL) and Deep Reinforcement Learning

(DRL).
DL: DL has great advantages in processing high-dimensional data. The main algorithm used in the Internet

of UAVs is Deep Neural Network (DNN), which can be leveraged for feature processing of high-dimensional
data [129].

RL:Decision making is required in many application scenarios of UAVs, e.g., UAVs need to make light decisions
when performing target tracking tasks. RL enables UAVs to interact with the environment to obtain suitable
decisions. The main algorithm applied in the Internet of UAVs is Q-learning. It enables UAVs to acquire suitable
policies in a dynamic environment without relying on prior knowledge.

DRL: In the Internet of UAVs, UAVs not only need to process data with high-dimensional characteristics, but
also need to make decisions based on these data. DRL is an integration of DL and RL, which has the advantages
of the both. The main algorithms applied in the Internet of UAVs include actor-critic, Deep Q Network (DQN),
Deep Deterministic Policy Gradient (DDPG), Multi-Agent Deep Reinforcement Learning (MADRL) and
Twin Delayed Deep Deterministic Policy Gradient (TD3). Among them, actor-critic can solve the continuous
light decision problem in the Internet of UAVs. DQN can be used to solve discrete decision problems for UAVs.
DDPG is applicable to continuous action decision problems of UAVs. For the scenarios with multiple UAVs,
MADRL can be used to solve the collaboration and game problem among UAVs. In addition, TD3 is applicable to
the high-dimensional continuous action space in the Internet of UAVs, and it has high stability.

Lesson 2: The employment of ML in the Internet of UAVs can bring many beneits, mainly in terms of intelligent
decision making. ML can enable UAVs to interact with environments for resource allocation and light decision
making in dynamic environments [28]. In addition, ML can also solve mathematical optimization problems that
are diicult to solve by traditional convex optimization methods.

However, UAVs are with limited energy and computation resources, and ML training requires a large amount of
computation resources.Merely using computation resources of the UAVmay signiicantly degrade the performance
of ML.
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Fig. 4. MEC-enabled ML architecture [124].

2.3 The Integration of MEC and ML in The Internet of UAVs

MEC needs intelligent decisions to adapt to the dynamic environment, and ML needs computation resources
to train the learning model. Fortunately, ML can enable MEC to make intelligent oloading decisions in the
dynamic environment, while MEC can enable ML to oload inference tasks to ESs by satisfying the demand of
computation resources. This subsection introduces two architectures for integrating MEC and ML in the Internet
of UAVs, and summarizes the issues need to be considered.

2.3.1 ML-enabled MEC Architectures. Tasks generated by mobile applications are generally time-varying and
uncertain. Using only binary oloading makes the system ineicient, while using only partial oloading cannot
handle the case of non-separable tasks. This requires dynamic oloading decisions, i.e., whether to split the task
and which part of the task needs to be oloaded after splitting. In addition, the practical application scenarios
of MEC in the Internet of UAVs have high-dimensional features, which complicate the task oloading decision.
Using ML-enabled MEC for oloading can largely improve the oloading eiciency of ESs compared to both
binary oloading and ML-free partial oloading. As shown in Fig. 3, IoT devices have tasks to oload, and UAVs
act as ESs to provide computation services for IoT devices. First, the nearest idle UAV to the IoT device is searched
for, and here the UAV is the ES that provides computation services. Then, whether the task can be segmented and
how to segment it are determined by ML. The oloading decision is made for the partitioned tasks, including
which part should be oloaded to the UAV for processing and which part should be processed locally.

In this architecture, we need to consider which ML to choose for optimizing the decision process of MEC.
Diferent kinds of ML have distinct advantages and limitations. For example, RL can get into dimensional
disasters when solving high-dimensional problems. When choosing ML methods, we also need to model the
system in conjunction with the characteristics of the Internet of UAVs, to reduce system latency and energy
consumption [90].

2.3.2 MEC-enabled ML Architectures. ML extends applications of the Internet of UAVs with its environment
interaction capability, such as UAV target tracking. However, ML itself requires a large amount of computation
resources, which makes the scarce computation resources in wireless networks more insuicient. Therefore, the
inference tasks of ML can be oloaded, and processed by the deployed ES or idle UAVs. As shown in Fig. 4, the
MEC-enabled ML architecture includes UAVs, IoT devices and ESs. Currently, ML oloading focuses on DNN
oloading due to its signiicant role in computer vision for high computation demands, and can be categorized
into static partition oloading and dynamic partition oloading. The former one divides layers with the same
input, while the latter one is based on the contextual information of the environment and characteristics of
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Fig. 5. IRS-enabled UAV communications.

DNN layers. After partitioning, oloading decisions are made for these partitions by considering oloading
costs and computation requirements. Integrating MEC with ML is promising to enable IoT devices with limited
computation resources to perform ML tasks.

2.3.3 Key Issues. The issues of MEC and ML integration in the Internet of UAVs mainly include:
Dynamic Environment: The mobility of the UAV and users makes the channel environment constantly

change, which greatly afects the transmission eiciency. In addition, the demand and density of users are
random [112], further increasing the dynamic environment of UAV-enabled MEC. The changing environment
makes traditional methods ineicient in solving the problems of UAV-enabled MEC systems. ML can assist
UAV-enabled MEC systems to be adaptive to the dynamic environment for intelligent oloading and real-time
resource scheduling decisions. Therefore, how to design ML-based methods to solve UAV-enabled MEC systems
is an important issue.

Resource Limitations: The computation resource of UAVs is limited, and the service capacity of a single UAV
fails to meet the increasing demands of IoTs. Therefore, MEC systems with multiple UAVs are mainly considered
at present. In addition, the use of ground ESs can further increase the computation oloading capability of the
system. However, the computation oloading also intensiies the energy consumption of UAVs, further reducing
the lifetime of UAVs. For the energy limitation problem, some studies focus on the use of energy harvesting to
supplement the energy of UAVs timely. In addition, the scarce spectrum resource of UAVs limits the transmission
rate and number of users served by UAVs. The use of communication technologies, such as NOMA, is promising
to solve this problem.

NLoS Transmission: As shown in Fig. 5, Non-LoS (NLoS) scenarios are often encountered during the light
of UAVs, which can degrade the quality of wireless communications [37]. IRS can be used in the Internet of UAVs
to improve the quality of communications [139]. IRS consists of a central control element, and a large number of
passive relection units, each of which can be controlled by the central control element to adjust the amplitude,
the phase, and the polarization angle of the incident signal [59]. The gain of IRS includes virtual array gain and
relection-assisted beamforming gain. The former one is obtained by combining the direct relection signal and
the IRS relection signal. The latter one is achieved by controlling the element phase shift by the IRS controller [1].
IRS has the advantages of easy control and low costs, which can make the wireless communication environment
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suitable to meet communication requirements of the Internet of UAVs [139]. In addition, IRS can be deployed on
the external walls of urban high-rise buildings without imposing additional burden on UAVs.

Overloaded UAVs: Owing to the heterogeneity of IoT terminal users, diferent tasks are generated from user
side, leading to the overload of some UAVs. Therefore, we need to consider horizontal oloading of UAVs, i.e.,
tasks are oloaded between UAVs. In addition, since the channel environment is variable between users and
UAVs, to improve system throughput, UAVs will select the users with better channel conditions. This drastically
reduces the QoS of some users, and the fairness in the MEC network needs to be guaranteed.

Conlict of Optimization Metrics: There are many optimization metrics in the UAV-enabled MEC systems,
such as latency, energy consumption, and throughput. However, the optimization of diferent metrics may be
conlicting, such as latency and energy consumption, i.e., the decrease of latency may cause the increase of energy
consumption. Therefore, in the design of UAV-enabled MEC systems, multiple optimization metrics need to be
jointly considered to prevent the collapse of a certain index, making the multi-objective optimization problem
rather complex.
Threat of Eavesdropping: The UAV-enabled MEC network is vulnerable to the threat of eavesdropping

due to the exposed environment and the wireless channel. Although the research on the secure communication
of single UAV has been well discussed, the oloading security of multiple UAVs is more complex, and it is
necessary to consider not only the security between UAVs and users, but also the communication security
between UAVs. In addition, since UAVs may belong to diferent service providers, user privacy leakage from
information transmission between UAVs needs to be considered.
Limitations of ML Inference: Although ML can partially solve the dynamic environment problem in the

Internet of UAVs, the inference of ML requires a large amount of computation resources, while UAVs have limited
resources and limited storage capacity. Furthermore, the use of ML can intensify the energy consumption of
UAVs and shorten their service time. The current research is mainly about oloading the inference tasks of ML
deployed on UAVs to ESs to meet computation requirements.

3 APPLICATIONS OF MEC AND ML IN THE INTERNET OF UAVS

This section introduces the applications of the Internet of UAVs with the integration of MEC and ML in three
main scenarios, including urban, industrial and emergency scenarios, to demonstrate the important roles of UAVs
in the development of IoT.

3.1 Urban Scenarios

With the rapid development of smart cities, emerging applications are gradually increasing in demand. UAVs can
be integrated with MEC and ML to provide various services for intelligent transportation, urban surveillance and
IoT data analysis. In the following, we will introduce applications in these areas in detail.

3.1.1 Intelligent Transportation. In recent years, traic congestion and traic accidents have greatly disturbed
people’s life, leading to extensive research on intelligent transportation [80]. UAVs are capable of collecting the
real-time information of road conditions and providing timely feedback, greatly reducing the response time of
traic accidents. Authors in [23] use UAVs to collect information about vehicles in intelligent traic systems,
which greatly improves the freshness of information. Authors in [45] improve the fairness of data collected
by UAVs at traic nodes through controlling their light speeds. In addition, there is a large amount of data
interaction between vehicles in the Internet of vehicles [82], and UAVs can provide edge computing services for
them. Furthermore, authors in [84] use UAVs to serve as ESs to provide latency-sensitive computation services
for vehicles, and utilize ML to manage the allocation of computation resources. Authors in [104] leverage ML
to coordinate the behaviors of multiple UAVs to provide computation oloading services for ground vehicles,
improving the data processing capability of the Internet of vehicles.
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3.1.2 Urban Surveillance. UAVs are promising to facilitate real-time monitoring of speciic areas, and infrastruc-
ture as well as public services can be enhanced based on the collected data to enhance the lived experience of
citizens. Authors in [30] consider deploying UAVs to monitor urban safety. In [42], authors use legitimate UAVs
to monitor suspicious UAVs, and employ legitimate UAVs to block their receivers to improve eavesdropping rate
of legitimate UAVs on suspicious UAVs. UAVs can also monitor crowds in cities to provide timely response to
perform situational awareness. Authors in [29] leverage UAV swarm to monitor pedestrians and vehicles in a
certain area and shorten the distance between UAVs and targets in a controllable range to provide high-quality
monitoring. In addition, authors in [117] use ML-assisted UAVs to track dynamic position of targets.

3.1.3 IoT Data Analysis. The volume of IoT data is increasing gradually, but users at urban locations are facing
the shortage of computation resources. Deploying a large number of ESs in the areas with unpredictable spikes in
computing demand is not cost-efective. UAVs can relieve the shortage of computation resources in IoT. Authors
in [21] use a single UAV as an ES to provide computation services for mobile devices, processing tasks that require
high computation and low latency. Authors in [93] use multiple UAVs to provide computation services in IoT,
and leverage ML to coordinate the behaviors of multiple UAVs to improve oloading eiciency. Moreover, UAVs
can collect data from sensors for processing and promptly transmit results to remote devices. Authors in [133]
consider a common data collection scenario for UAVs, where the processed data is delivered to nearby ESs.

3.2 Industrial Scenarios

UAVs can be also used in industrial scenarios to improve plant eiciency and security. With the development of
industry, factories are growing in size, bringing management and security issues [77]. This subsection introduces
the great potential of UAVs in industrial scenarios in terms of industrial information management and factory
security.

3.2.1 Industrial Information Management. The amount of information in the industrial area is large and costly for
collection and management. UAVs can perform tasks such as inventorying warehouse, which greatly reduces costs
and improves eiciency of inventory. Authors in [51] propose to equip UAVs with radio frequency identiication
readers to count and manage inished goods and raw materials on Three-Dimensional (3D) shelves in tobacco
warehouses. In addition, authors in [145] use UAVs to collect information on power lines in smart grids, which
greatly reduces collection costs compared to traditional manual collection, and also ensures the safety of workers.
UAVs are used for information acquisition, resulting in low costs and rapid examination of transmission lines [52].

3.2.2 Industrial Factory Security. Due to the complex environment in factories and the high risk of safety
supervision, accidents can directly bring serious economic damage and threaten lives of people. UAVs can be
deployed lexibly in industrial factories to identify and provide timely feedback on safety hazards by learning
algorithms. For example, an adaptive learning algorithm is leveraged to enable UAVs to discriminate and provide
feedback on wall cracks on building surfaces [53]. Authors in [12] use UAVs to provide edge computing services
to improve the safety incident handling capability in factories.

3.3 Emergency Scenarios

The solution for handling unexpected situations is always topical. For sudden disasters and network collapse, UAV
networks can bring convenient and rapid solutions. Applications of UAVs in emergency scenarios mainly include
rescue and search, information collection in disaster areas, material transportation, and aerial base stations and
relays. In the following, we state excellent performance of UAVs in emergency scenarios from three aspects:
geological disaster rescue, post-disaster network reconstruction and forest ire management.
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3.3.1 Geological Disaster Rescue. How to eiciently and safely conduct rescue work in geological disaster areas
always attracts much attention. Geological disasters, such as earthquakes and landslides, pose great diiculties
and dangers on rescuers. ML enables UAVs to identify stranded people in disaster areas and collect geological
information for analyzing disaster trends. Small UAVs can be used to detect people inside buildings in an
earthquake and transport supplies in emergency areas where vehicles are not convenient [27]. In addition,
geological hazards may continuously occur, such as aftershocks of earthquakes. Therefore, collecting geological
information in the disaster area is necessary to guarantee the safety of rescuers and trapped people. Authors
in [107] make use of UAVs to collect geological information from multi-hazard areas to grade the hazard. Authors
in [101] design a UAV-assisted mobile crowd sensing system to collect and process data for disaster rescues.
Furthermore, authors in [35] leverage UAVs combined with terrestrial laser scanning for landslide monitoring.

3.3.2 Post-Disaster Network Reconstruction. The recovery of communication networks after disasters is extremely
important for the afected people and relief eforts. Rapid communication network restoration can not only
reassure the afected people, but also provide necessary communications for disaster relief workers. Authors
in [102] use UAVs as relays to restore communications in the disaster area through macro base stations. However,
in most cases there are no available base stations in the vicinity of the disaster area. Authors in [115] construct a
joint air-ground network based on both UAVs and vehicles as base stations to quickly restore networks in the
disaster area, and use ML to optimize trajectories of UAVs and vehicles. Advantages of UAVs in disaster areas
are obvious when road conditions in afected areas are harsh. UAVs are leveraged in [49] to provide emergency
communication services when the locations of people in disaster areas are unknown, and ML is integrated to
improve service capability. In addition, authors in [137] consider using UAVs to provide communication services
and collect information from disaster areas, and employ ML to optimize trajectories of UAVs.

3.3.3 Forest Fire Management. Forest ires and wildires are always concerned by researchers because of their
imperceptibility, rapid development, abrupt changes and high hazard. UAVs are capable of real-time obstacle
avoidance with the development of ML, and can be used for prevention and control of forest ires and wildires.
Authors in [98] propose to use UAVs to collect information on sensors deployed in forests to control and respond
to ire situations in real time. UAVs can also be used to monitor ire tendencies to support ire suppression
operations. Authors in [132] use UAVs to sense the persistent situation of forest ires and analyze ire development
for potential emergencies in advance. Furthermore, authors in [24] propose to control multiple UAVs to detect
and organize ire suppression in forest ires at the point of ignition.
Lesson 3: From the above application examples, it is clear that the Internet of UAVs has a wide range of

applications in urban, industrial and emergency scenarios by integrating with MEC and ML. MEC enables UAVs
to provide computation services and interactions in cities and industries, and extends interactions to the air. In
addition, MEC enables UAVs to collect data from sensors to monitor ires in the forest. What’s more, ML enables
UAVs to be intelligent, not only optimizing their trajectories and energy management, but also enabling them
with the capability of target identiication and tracking for surveillance services. Finally, ML is promising to
improve the oloading eiciency of MEC in diferent scenarios [84] [104] [93].

4 SOLUTIONS FOR MEC AND ML IN THE INTERNET OF UAVS

About 25 billion IoT devices are estimated to be in use by 2025, bringing new applications for IoT, such as real-time
image analysis, and traic information detection [131]. However, the huge amount of data requires IoT devices to
be able to process and receive data in a timely manner [138]. The UAV is considered to be an indispensable role
in the IoT, since it can help IoT devices solve the problem of insuicient computation resources. This section
summarizes and discusses solutions for solving issues of MEC and ML in the Internet of UAVs and gives the
corresponding lessons. A summary of solutions for MEC and ML in The Internet of UAVs is illustrated in Table 1.
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Table 1. Summary of solutions for MEC and ML in The Internet of UAVs
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[31] A wireless powered MEC network with binary oloading DRL
√ × × × × √ × ×

[55] An energy-eicient multi-agent MEC network MADRL
√ √ × × × √ √ ×

[96]
A multi-objective optimized trajectory control and oloading

scheme
MARL

√ × × √ × √ √ √

[141]
A multi-UAV and multi-ES MEC network for collaborative

oloading
MADRL

√ √ × √ × √ √ ×

[93]
A stochastic game-based oloading and resource allocation

scheme
MADRL, TD3

√ √ × √ × √ √ ×

[50] A UAV and remote cloud collaborative oloading system DQN
√ × × √ × √ √ ×

[7] A multi-UAV-enabled uplink communication MEC network DDPG, DQN
√ × × √ × √ √ ×

[57] A maritime MEC network for latency minimization DDPG
√ √ √ × × √ × ×

[86] An MEC network that considers user equity services MADRL
√ × √ × × × × √

[17] A potential game-based service allocation scheme DRL
√ × √ × × × √ √

[34] A secure oloading scheme that considers backdoor attacks FDRL
√ × × × √ × × ×

[94] A consortium blockchain-based secure oloading system MADDPG × × × √ √ √ √ ×

[71] A semi-distributed secure oloading framework FDRL × × × × √ × √ ×

[36]
A heterogeneous oloading network combined with energy

harvest
MADRL × √ × √ × √ √ ×

[143] A NOMA-assisted UAV oloading network MADRL × √ × √ × × × √

[103] An MEC network communicating in the terahertz band DDPG
√ √ × × × √ × ×

(ł
√
ž if the solution satisies the property, ł×ž if not)

4.1 Intelligent Computation Ofloading

Since the UAV-enabled MEC network is dynamic, and the channel, user locations, and task volume are constantly
changing, it is diicult to obtain oloading decision by traditional methods. Therefore, researchers employ
ML-based methods to achieve intelligent computation oloading, and authors in [106] propose an optimization
algorithm to achieve real-time trajectory control to minimize the total energy consumption of the system. The
algorithm is based on DRL with two neural networks, one of which presents the speciic trajectory of the UAV and
the other network evaluates the action. In addition, a low-complexity matching algorithm is proposed to solve
the user association and resource allocation problems. A DRL-based online oloading framework is proposed
in [31] to solve the task oloading decision and time allocation problems in time-varying channels.

In addition, authors in [10] propose a space-air-ground oloading network, and utilize a DRL-based algorithm
to learn oloading policies from the dynamic environment, in order to minimize the total system cost. To solve
the curse of dimensionality, they propose an actor-critic algorithm based on policy gradient to improve algorithm
eiciency. In addition, authors in [125] consider three oloading modes of UAVs, i.e., direct forwarding, coarse
grained oloading, and ine grained oloading. Among them, direct forwarding refers to the UAV as a relay, coarse
oloading means that the task is forwarded after simple processing such as noise reduction, while ine-grained
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oloading returns the task with complete processing. The authors propose a DQN-based algorithm to optimize
the task completion time and the system cost.
However, single-agent ML algorithms need to deal with large-scale states and action spaces, leading to the

increase of oloading latency. Authors in [4] transform the joint problem of computation oloading and data
sensing into a partially observableMarkov Decision Process (MDP), and propose an algorithm based onMulti-

Agent RL (MARL) to optimize the system energy eiciency and cost. Authors in [55] propose a multi-agent
proximal policy optimization algorithm to realize dynamic decision making in MEC systems, with the objective
of minimizing system energy consumption. In addition, they employ a ground-deployed digital twin to monitor
the network status of MEC.
Since the computation demands of users are dynamic, authors in [79] consider the game between ESs and

users, and propose an algorithm based on the strategy selection probability to minimize the system cost. Authors
in [146] consider the correlation and topological constraints among tasks. They consider the bandwidth allocation
of users and propose an MARL-based algorithm to minimize the average response time of tasks. Authors in [84]
consider UAV and ground macro base stations to provide oloading services for vehicles with heterogeneous
QoS requirements, and propose an Multi-Agent DDPG (MADDPG)-based algorithm to solve the computation
resource allocation problem, to improve the throughput of the system.

Considering the stochastic fading channel and task requirements, authors in [3] propose a oloading framework
based on Lyapunov optimization and DRL. In this framework, the optimization problem is modeled as a multi-
level stochastic mixed-integer nonlinear programming, and Lyapunov optimization is employed to decouple
the problem into deterministic subproblems. Finally, subproblems are solved by model-free DRL to maximize
the average weighted total computation rate of the system. Considering the stochasticity of tasks and the time-
varying nature of channels, authors in [56] formulate the problem of oloading decision and resource allocation
as an MDP problem. DRL-based algorithms are proposed to solve the energy-eiciency optimization problem in
distributed and centralized UAV-enabled MEC systems separately. In addition, considering the mobility of users,
authors in [54] establish a Gauss-Markov model to predict the location of mobile users and propose a DRL-based
algorithm to optimize the trajectory of UAVs and the QoS of users.

Lesson 4: ML is widely used in oloading decisions, resource allocation, and trajectory design for MEC in the
Internet of UAVs. Nevertheless, MEC-based Internet of UAVs is highly dynamic and high-dimensional, and RL
may fall into the curse of dimensionality. Therefore, DRL is generally used in the Internet of UAVs. The game
among UAVs needs to be considered in multi-UAV scenarios. Thus, multi-agent ML algorithms, such as MARL
and MADRL, can be considered for oloading decision to handle the cooperation and competition among UAVs.
In addition, when the number of UAVs is large, a steep increase in the state and action space can be caused, and
the training result is diicult to converge.

4.2 Eficiency Improvement

The limited energy and spectrum resources of UAV seriously afect the performance of MEC systems. Considering
the energy limitation of UAVs and the high energy consumption of the model training of RL, authors in [91]
propose a self-learning oloading strategy with a simpliied decision process. The strategy uses time series and
ML regression to predict future conditions. Compared with the RL-based oloading decision scheme, this scheme
consumes less energy and also has an accuracy comparable to RL. To alleviate the energy limitation of UAVs,
UAVs are equipped with energy harvesting units to obtain sustainable energy [36]. A distributed DRL-based
oloading scheme is proposed to minimize the system cost. In addition, to enhance the cooperation among UAVs,
the authors also propose a gated recurrent unit-assisted MADRL algorithm to optimize the oloading decision.
In [63], UAVs oload tasks to ground ESs to extend the lifetime of UAVs, and a DRL-based algorithm is proposed
to jointly optimize the oloading decision and light direction. To minimize the energy consumption of UAVs,
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authors in [15] propose a DRL-based oloading framework. In this framework, a system controller is used to
control the switch of the on-board computing elements or to oload tasks to other UAVs for processing.
Considering the spectrum limitation of UAVs, authors in [103] utilize terahertz technology to enhance the

system capacity. Furthermore, they construct a physical channel model of the terahertz link, and formulate
an optimization problem for joint resource allocation and computation oloading. Finally, they propose an
algorithm based on double-DQN and DDPG to optimize the overall system delay. In addition, authors in [143]
employ NOMA to improve the spectral eiciency of UAV-enabled MEC systems and propose a multi-agent
mutual DQN-based algorithm to optimize UAV trajectories and resource allocation. To address user mobility,
they propose a K-means-based algorithm to cluster users and determine the dynamic decoding order periodically.
Speciically, the optimization problem is solved in two stages. The irst stage determines user clusters to obtain
user associations, and the other one optimizes trajectories and power allocation to optimize the total system
throughput.
Lesson 5: Existing solutions for energy eiciency improvement of UAVs mainly focus on optimizing energy

consumption and energy harvesting, where energy harvesting solutions such as wind and solar energy are
designed in [36]. However, wind and solar energy harvesting depend on the environment [108] and are unstable,
which may result in degradation of system performance. Although NOMA technology can improve spectrum
utilization by allocating a sub-channel to multiple users, it increases the complexity of receivers, which is
not friendly to UAV-enabled MEC systems. Furthermore, the consideration of decoding order complicates the
oloading optimization problem.

4.3 Channel Condition Amelioration

The dynamic channel condition and the emergence of high-rise buildings in cities greatly afect the computation
services provided by the Internet of UAVs [139]. It is possible to obtain better channel conditions by adjusting
the trajectories of UAVs. Authors in [43] incorporate the consideration of wireless channels in the trajectory
design of UAVs, adjust the position of UAVs to obtain the best channel condition, and solve the joint problem
of trajectory design and resource allocation by leveraging Successive Convex Approximation (SCA) and
Dinkelbach method to maximize the energy eiciency of the system. In addition, authors in [136] consider the
quality constraint of the communication link between UAVs and users, which is determined by the minimum
received signal-to-noise ratio. It uses a graph-theoretic approach to solve the light delay optimization problem.
However, the height in the actual environment afects the channel conditions of the UAV, and the building
shading in the city is closely related to the height. Authors in [14] consider the actual environment where the
LoS channel condition probability appears. It uses Block Coordinate Descent (BCD) and SCA to optimize the
communication eiciency.
The use of IRS to enhance UAV communication is gradually being studied. However, the use of IRS to assist

UAV communication has two main challenges. One is channel estimation and tracking, where the channel
conditions of UAVs are variable and require estimation and tracking [130]. The other is the design of the relection
factor, i.e., the phase shift matrix in the Internet of UAVs [69]. Authors in [130] consider channel tracking and
estimation for UAV-IRS in 3D dynamic scenes, and use DL-based algorithms to improve the performance of
channel tracking. Considering diferent IRS relection units, interference among diferent IRS relection units is
resolved in [47] by counting propagation phases. IRS propagation phases are aligned using strong components
to achieve the improvement of the received signal strength and the reduction of multi-path efect. Wireless
communications are vulnerable to attacks, and thus the security of UAV communications is important. Authors
in [97] consider elevation angle dependent probabilistic channels that are relevant to the actual scenario. They
propose a beamforming and semideinite relaxation approach to jointly optimize LoS path losses and UAV
trajectories, and use Alternating Optimization (AO) to improve the secrecy rate of the system. Considering
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UAV wideband systems, IRS is applied to UAV communication system with OFDMA. AO is leveraged in [113] to
optimize IRS scheduling, UAV trajectories, and resource allocation to improve the data transmission rate.
For the design of the relection factor, authors in [69] use IRS to enhance the NOMA communication of the

UAV, consider the decoding order of NOMA, and use BCD and SCA to maximize the data transmission rate of the
system. Considering power transmission limitations, trajectory design, resource allocation and relection matrix
of the IRS, BCD is leveraged in [139] to decouple the formulated optimization problem into three sub-problems to
maximize the data transmission rate. Similarly, authors in [69] use IRS to enhance the NOMA communication of
UAVs, consider the decoding order of NOMA, and use BCD and SCA to maximize the data transmission rate of the
system. Authors in [66] consider IRS using uniform planar array, and jointly optimize the trajectory of UAVs and
the phase shift of IRS, based on double-DQN and DDPG, aiming to maximize the gain of wireless communications
in the Internet of UAVs. In addition, authors in [83] consider the joint channel estimation and relection factor
design, integrate the phase shift and transmit beamforming of IRS, and consider the light trajectory of UAVs for
optimization. In order to maximize the average secrecy rate, the problem is decomposed into three sub-problems.
They apply AO to solve transmit beamforming, leverage fractional programming method to solve the phase shift
matrix of IRS, and use SCA to optimize the UAV trajectory.
Lesson 6:Most of existing studies consider the ideal LoS scenario and the static access of the user, which is

not consistent with the actual application scenario. The light altitude of UAVs in the actual environment afects
the channel conditions of the wireless communication. For example, diferent altitude obstructions afect the LoS
path between UAVs and users. Therefore, when modeling the light space of UAVs, 3D space should be considered.
In addition, it is necessary to consider the impact of UAV mobility on the channel, i.e., considering the stability of
the wireless channel. What’s more, security and failure scenarios are also necessary to be considered. The current
research mainly focuses on the channel estimation and relection factor design between IRS and UAVs. However,
IRS scheduling design also needs to be considered. A reasonable IRS scheduling can not only accommodate the
dynamic amount of users in the Internet of UAVs, but also avoid IRS overloading.

4.4 Load Balance

To solve the problem of surging tasks in some regions served by UAVs, authors in [20] use parallel oloading
among UAVs to achieve load balance. Due to the existence of dimensionality curse, the authors propose an
algorithm based on DRL to optimize the QoS of users. An algorithm based on multi-armed bandit is used to select
the optimal multi-hop path to maximize the system utility [70]. Authors in [114] use discrete Stackelberg game
to solve computation oloading and UAV deployment problems in hierarchical UAV-MEC systems. The UAV
can be used as ESs and relays in this game, and the authors propose a hierarchical learning framework to reach
Stackelberg equilibrium.

Considering the limited resources of UAVs, authors in [57] propose a two-layer MEC architecture for regulating
the load among UAVs. Speciically, when the low-layer UAVs are overloaded, their tasks can be oloaded to
the upper-layer UAVs for processing to reduce task latency. The architecture can also determine the number of
virtual machines based on tasks to further improve oloading eiciency. Authors in [105] propose an MADRL-
based algorithm to optimize the geographic fairness and the load among UAVs to minimize the system energy
consumption. In particular, geographic fairness can relect the level of user QoS at the current time. Moreover,
the trajectories of UAVs are planned by a low-complexity algorithm.
Besides, the fairness of users also needs to be considered. Considering the fairness problem caused by the

varying channel environments, authors in [86] employ proportional fairness scheduling to set the time-varying
weights of users between users and UAVs. Speciically, this problem is formulated as a weighted throughput
maximization problem and can be transformed into MDP. Furthermore, the authors propose an MADRL-based
fairness throughput optimization algorithm to solve the problem. An MADDPG-based algorithm is put forwarded
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to solve the trajectory optimization and user association problem, with the purpose of improving system energy
eiciency [17]. The potential game is introduced in the association problem of multiple UAVs and users to reduce
the computation complexity and the system cost. Authors in [142] propose to predict user behaviors to avoid
UAV overloading to maximize the total system throughput. The load balance of UAVs is realized by a distributed
framework, and an active mobility management solution is used to predict trajectories and requests of users.

Lesson 7: Existing solutions to realize load balance among of UAVs are mainly achieved by parallel oloading
among UAVs. However, the transmission of information among UAVs also causes certain latency, and it cannot
ensure that there are always idle UAVs near the overloaded ones. For this reason, it is promising to analyze the
historical information and predict the future state of users to improve the system performance.

4.5 Multi-Objective Optimization

The conlict among diferent optimization metrics is typically relieved by constructing a multi-objective opti-
mization problem and then trying to reach a balance by designing an eicient optimization algorithm. Authors
in [7] consider the trade-of between delay and energy consumption, and formulate the weighted sum of the two
metrics as a computation cost minimization problem. The authors use algorithms based on DDPG and DQN to
solve the trajectory and association optimization problem of UAVs, respectively. Similar to [7], authors in [92] also
consider the computation cost minimization problem, and propose a DDPG-based MEC framework to optimize
the oloading policy and resource allocation. In this framework, a UAV cluster head exists to act as an agent,
training the local model to ind the optimal action. Furthermore, in order to cope with the continuous action
space, the authors employ a central network controller to train the global model and then reduce the action space
on the UAV cluster head.
In addition, authors in [50] decompose the cost minimization problem into three subproblems, i.e., UAV

deployment, resource allocation, and oloading decision problems. For the former two subproblems, sequential
convex programming and sequential quadratic programming are used to solve them, respectively. Because the
oloading decision problem contains decision variables, it is solved by the DQN algorithm. Furthermore, diferent
delay and energy consumption weights are given to users for preference representation. Similar to [50], authors
in [141] assign weights to both energy consumption and delay in the total computation cost. They use MEC and
ground ESs for collaborative service delivery, propose a collaborative oloading framework based on MADRL,
and utilize TD3 algorithm to solve the problem of high-dimensional continuous action space.
Authors in [38] consider the balance of latency and energy consumption, and evaluate the QoS of users by

the gap between their maximum tolerated latency and the actual latency. Since this problem is oriented to a
multi-UAV-enabled MEC network, it is transformed into a multi-agent MDP. In this system, each UAV is an agent
and is optimized by the MADDPG-based algorithm. Authors in [93] transform the minimization system cost
problem into a stochastic game, and propose an MADDPG-based algorithm to solve the game. Speciically, the
algorithm learns the optimal policy in a dynamic environment, and reduces the model training cost by centralized
training and decentralized execution.
Authors in [96] consider the balance of three optimization metrics, i.e., latency, energy consumption, and

throughput, and formulate it as a weighted sum problem. Then, the problem is transformed into a multi-objective
Markov problem, and solved by an evolutionary RL-based algorithm. The algorithm can output multiple non-
dominated policies simultaneously to satisfy diferent user preferences.
Lesson 8: The main optimization metrics in UAV-enabled MEC systems are energy consumption, latency,

and throughput, and these conlicted metrics are usually weighted and then summed for optimization. However,
the weighted sum usually has bias and afects the balance of metrics. In this regard, multi-objective learning
algorithms are always leveraged, but user heterogeneous QoS requirements need comprehensive considerations.
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4.6 Security and Privacy

The open communication environments of UAVs expose the oloading of users to the risk of eavesdropping
and the heterogeneous network raises the privacy leakage problem. To solve the security problem for UAV
computation oloading and energy harvesting, authors in [94] propose a consortium blockchain with smart
contracts to decentralize resource allocation between users and UAVs, and secure transactions. Speciically, the
consortium creates accounts with public parameters and uniquely identiies addresses for the entities involved
in the computation, such as UAVs, and encrypts keys. In addition, the authors transform the task oloading
problem into a Stackelberg game, and use an MADDPG-based algorithm to optimize the oloading decision for
the minimization of the system cost.

Some studies utilize ground jammers to improve the system security. Authors in [60] deploy ground jammers
to send jamming messages to secure the transmission of MEC systems. Considering data queue stability and
basic computation requirements, oloading decision and resource allocation are jointly optimized. The former
is generated by DNN and the latter is optimized by SCA algorithm to maximize the system eiciency. Authors
in [61] consider the heterogeneous requirements of users, and use MARL to improve the security of MEC system
to optimize the system utility. Among them, the UAV deployment is optimized by the spiral placement method,
and the ground jammer is used to interfere the jammer UAV.

Federated learning has advantages in data privacy. Authors in [11] propose a federated DRL-based framework to
optimize task oloading and power allocation policies, to reduce the total system cost while securing data privacy.
Speciically, the optimization problem is modeled as an MDP and optimized by DRL. To prevent frequent training
of DRL from compromising user privacy, the authors use Federated DRL (FDRL) to improve the security of the
MEC network. Authors in [71] propose a centralized MARL-based algorithm for oloading decision making and
resource allocation to minimize the sum energy consumption. To solve the privacy problem caused by the large
amount of centralized data, the authors propose a semi-distributed MARL scheme, and Gaussian diferentiation
is used to protect the data privacy of users.

Although, ML is capable to interact with the dynamic environment, it is vulnerable to attacks. Authors in [34]
propose a FDRL-based algorithm to optimize the oloading policy and ensure the data privacy of users, and
leverage DQN to solve the curse of dimensionality. Furthermore, considering that the sharing of model parameters
in FDRL is vulnerable to the backdoor attack, the authors propose a new triggerless backdoor attack scheme to
perform a backdoor attack against the reward function, and propose a lightweight agnostic defense mechanism
to demonstrate its efectiveness.

Lesson 9: The methods used for secure oloading in UAV-enabled MEC networks mainly include blockchain,
ground jammers, and federated learning. However, the blockchain may increase the oloading latency, which
is unacceptable for latency-sensitive missions. Ground jammers need to be deployed on the ground, and it is
diicult to ensure the real-time security of communications in dynamic scenarios. Moreover, ML such as RL has
the risk of backdoor attacks [34], and thus appropriate defenses need to be deployed against these attacks.

4.7 Neural Layer Ofloading

ML inference requires a large amount of computation resources, and thus a huge delay can be caused when
it is executed on mobile devices, such as UAVs with limited computation resources. Therefore, recent studies
concentrate on dividing neural layers and oloading them to nearby or remote devices to speed up the training
process of ML. A distributed collaborative reasoning scheme is proposed in [33], to reduce latency and energy
consumption by oloading DNN partitions to heterogeneous end devices for training. In addition, the authors
design a DRL-based dynamic task assignment algorithm to further reduce latency. An oloading model for
chained DNNs is proposed in [18], and an improved depth-irst search algorithm is presented to obtain optimal
oloading decisions, which has a signiicant reduction in task latency. In addition, authors in [144] propose a
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partial oloading scheme, which processes DNN layers in parallel, and leverage particle swarm optimization to
schedule resources and make oloading decisions of the fusion layer, while preventing local optima, to reduce
DNN inference latency.

Using ESs at the network edge to oload DNN inference tasks can also reduce the inference latency. Authors
in [9] construct a model to extract the structure of DNNs. Then, a random forest regression algorithm is utilized
to estimate and partition to reduce the cost of each neural layer. After that, an appropriate layer is selected
for oloading, to reduce system delay. Authors in [32] propose a DNN partitioning, oloading and scheduling
strategy, which can oload the high-intensity DNN inference to ESs for processing and minimize the inference
latency in mobile networks. Authors in [118] formulate DNN oloading as a multiple assignment problem with
the purpose of proportional fairness maximization, and propose a distributed oloading scheme at the network
edge to accelerate inference. Authors in [122] propose a scheme for edge and cloud collaborative DNN oloading,
in which PSO-GA algorithm is introduced to optimize inference delay. In addition, a layer merge uploading
algorithm is proposed to optimize partitioning and uploading. Authors in [39] consider static and dynamic
network environments, and propose a DNN-based inference oloading framework, in which adaptive partitioning
and sizing of DNNs is performed.
The energy consumption of oloading is also a hot topic. A ine-grained elastic partitioning mechanism is

proposed in [89], to partition distributed DNNs in 5-Generation networks. The combination of MEC and device-
to-device techniques is considered to achieve the optimization of both delay and energy consumption of DNN
inference. Authors in [13] propose a DNN adaptive partitioning method for the collaboration between IoT devices
and ESs, and design a Liapunov-based algorithm to assist devices in oloading DNN tasks, to achieve the optimal
reduction in total system cost and latency. Authors in [19] propose a hierarchical partitioning strategy for DNN
partitioning and use a DNN latency prediction model to demonstrate the diference in latency between local and
edge computing of tasks. In addition, authors in [123] consider coupled coordination, reduce the diferentiation
among metrics, and optimize the load balance among edge nodes. They propose a local-edge-cloud collaborative
algorithm, which aims to improve DNN computation eiciency and the minimization of energy consumption.
Considering the collaboration among the cloud, the web and the edge, authors in [88] propose a DNN layering
method based on DDPG to achieve low latency and low cost for task processing.

Due to insuicient computation resources, DNNs require some compression to sacriice accuracy [8]. Authors
in [99] propose a conidence-based oloading framework, and use an adaptive scheme to decide which parts to
oload to guarantee DNN accuracy. Authors in [58] consider partial oloading of DNN inference tasks for multiple
streams, and propose an adaptive MEC inference framework to dynamically divide and schedule tasks. In addition,
authors in [121] propose a learning-based dynamic oloading method for DNN inference, and an approximate
algorithm based on random rounding technique is designed to optimize total system energy consumption and
the number of inference requests. Authors in [40] consider inference acceleration of delay-sensitive DNNs, and
design an online algorithm to schedule DNN oloading tasks, to maximize the system throughput. Authors
in [81] consider DL-based oloading of vision tasks on UAVs. By considering the noise in wireless channels, the
authors propose a DL-based denoising network to improve QoS.

Lesson 10: Researchers design various DNN layering strategies and leverageMEC tomeet the high computation
demand of ML. However, since the application scenarios of UAVs are dynamic, static DNN layering is diicult to
meet the requirements of users. In addition, the computation oloading game problem in dense-user scenarios
with multiple UAVs and multiple ESs needs to be further investigated.
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5 RESEARCH CHALLENGES AND OPEN ISSUES

Although we have introduced the latest progress in the Internet of UAVs, and summarized existing solutions in
previous sections, challenges still exist in the Internet of UAVs. In this section, we discuss several open issues for
future research.

5.1 Security Issues in The Internet of UAVs

The MEC-based Internet of UAVs is highly heterogeneous and vulnerable to attacks [48], and some researchers
have considered the corresponding security issues. For example, authors in [2] add a secure channel capacity
constraint to the oloading optimization problem to improve system security from the physical layer. However, this
scheme limits the channel capacity and only considers the communication security. Blockchain, as a distributed
and popular secure technology, has excellent performance in the ield of information security [76]. For distributed
heterogeneous networks prone to attacks, the blockchain can use consensus mechanism to authenticate devices,
and manage legitimate nodes to prevent the intrusion of malicious nodes. In addition, in terms of data security
and privacy, the anonymity and encryption technology encrypts the communication data between UAVs and IoT
devices, which makes it diicult for malicious eavesdroppers to obtain information and locate users. Therefore,
the employment of blockchain in the MEC-based Internet of UAVs to improve security is worth of study.
Although the blockchain can achieve an improvement in the security of the Internet of UAVs, it also brings

some challenges. For example, it increases energy and computation resource consumption of UAVs [127], which
is challenging for UAVs with scarce energy and computation resources. In addition, the mobility of UAVs and
IoT devices can lead to frequent access and disconnection of users. The large number of dynamically accessed
users raises the design diiculty of blockchain applications in the Internet of UAVs. In addition, it causes latency
and limits throughput of the Internet of UAVs. Therefore, it is rather challenging to adapt the blockchain to the
dynamic Internet of UAVs.

5.2 IRS-enabled Wireless Channels in The Internet of UAVs

Most studies assume LoS channels with known channel conditions between UAVs and IoT devices, which is not
consistent with the real-world environment. In addition, some studies reduce the interference caused by NLoS by
leveraging NOMA technology to the Internet of UAVs. However, NOMA increases the architecture complexity
of receivers in exchange for spectrum utilization improvement, which is not friendly to resource-limited UAVs
and IoT devices. IRS can be utilized to build a virtual LoS channel between UAVs and IoT devices to avoid
obstructions [139].
Although IRS technology is a promising solution to the NLoS path problem in the Internet of UAVs, it is

challenging to integrate IRS with UAVs to assist NLoS communications. The channel information in the Internet
of UAVs is imperfect and dynamic, and it is a challenge to perform channel estimation. In addition, although IRS is
low-cost, its resource is limited, and it is challenging to make reasonable IRS resource allocation by considering the
lexible characteristic of UAVs. Furthermore, since the IRS is exposed to the outside environment and vulnerable
to interference and damage from the environment, it is a challenge to solve security issues of IRS-based Internet
of UAVs.

5.3 Collaborative Ofloading of Multiple UAVs in Dynamic Environments

In the Internet of UAVs, UAVs are dynamic and required to be environment-aware. Meanwhile, the users served
by UAVs are also dynamic, and the locations of UAVs as well as users are changing. Multi-UAV scheduling is
diferent from single one, which needs to consider the collaboration and competition among UAVs. Currently,
MADRL and MARL are efective in solving the above problems, enabling UAVs to have the ability of environment
awareness and intelligent decision making.
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However, some issues are still challenging. For example, although MADRL can solve the dynamic oloading
and gaming problems of UAVs, it will increase the energy consumption of UAVs, which may reduce the lifetime
of UAVs. In addition, the current considerations are mostly about oloading decisions between small-scale UAVs
and users, while ignoring the convergence of algorithms and the unstable environment for large-scale users.
Furthermore, communication channel conditions among UAVs, such as sudden disconnection of some UAVs in
the service process, are not fully taken into account. What’s more, by extending multi-UAVs to 3D scenarios with
the addition of height factor, joint oloading decision and trajectory design are still challenging.

5.4 Balances among Various Metrics for UAV-Enabled MEC Systems

In UAV-enabled MEC systems, optimization metrics include latency, energy consumption and throughput.
Although various metrics are considered, there are only a few studies considering heterogeneity requirements
of users. Speciically, existing solutions generally construct a weighted sum of diferent preferences of users.
However, weights of diferent users are generally arbitrarily set, which may be unfair to users. In addition, for
throughput optimization, some users with poor channel conditions may not be permitted to access the system to
maximize the system utility. Therefore, we need to pay more attention to user QoS in the UAV-enabled MEC
system rather than just pursuing system beneits. In addition, most current algorithms are based on single policy
and cannot output multiple preferred policies at the same time. Multi-policy learning algorithms can provide a
set of Pareto optimal strategies for decision makers, which are helpful to solve the problem of heterogeneous
services in MEC systems.

5.5 Energy Eficiency in UAV-Enabled MEC Applications

How to reduce energy consumption and improve the lifetime of UAVs in MEC applications has been a hot topic.
The current research on single UAV-enabled MEC has almost matured and has limited performance improvement
in terms of energy consumption. Therefore, it is necessary to further reduce the overall energy consumption by
jointly scheduling UAVs and tasks in MEC systems.

However, using multiple UAVs to realize MEC still faces several challenges. In practical design, it is necessary
to consider the distance between UAVs and terminal users, as well as available computation resources of UAVs.
In addition, energy consumption of UAVs and the latency tolerance of users should be taken into account. It
is challenging to optimize the overall energy consumption of UAVs while considering all these issues together.
Moreover, we need to consider obstacles in the environment where UAVs provide edge computing services may
cause NLoS channel, so that the change of UAV location further increases the complexity of the problem.

6 CONCLUSION

We present a comprehensive survey on technologies, applications, solutions and challenges of the Internet of
UAVs, focusing on the integration of ML and MEC. First, we briely introduce the background of the Internet of
UAVs. Then, we summarize key techniques in MEC and ML being applied to the Internet of UAVs, and provide
architectures and issues for the integration of MEC and ML in the Internet of UAVs. After that, we present
applications of the Internet of UAVs integrated with MEC and ML in diferent scenarios. We categorize and
discuss the corresponding solutions based on the issues of MEC and ML in the Internet of UAVs. Finally, several
future research directions and open issues are given.
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